与えられた式 $\frac{\sqrt{-6}}{\sqrt{8}}$ を計算し、簡略化せよ。代数学複素数根号計算簡略化2025/4/51. 問題の内容与えられた式 −68\frac{\sqrt{-6}}{\sqrt{8}}8−6 を計算し、簡略化せよ。2. 解き方の手順まず、−6\sqrt{-6}−6 を 6i\sqrt{6}i6i と書き換えます。ここで、iii は虚数単位であり、i2=−1i^2 = -1i2=−1 です。したがって、式は以下のようになります。6i8\frac{\sqrt{6}i}{\sqrt{8}}86i次に、8\sqrt{8}8 を簡略化します。8=4×2=4×2=22\sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}8=4×2=4×2=22 となります。式は以下のようになります。6i22\frac{\sqrt{6}i}{2\sqrt{2}}226i6\sqrt{6}6 を 3×2=32\sqrt{3 \times 2} = \sqrt{3}\sqrt{2}3×2=32 と書き換えます。式は以下のようになります。32i22\frac{\sqrt{3}\sqrt{2}i}{2\sqrt{2}}2232i分子と分母の両方にある 2\sqrt{2}2 を約分します。式は以下のようになります。3i2\frac{\sqrt{3}i}{2}23i3. 最終的な答え3i2\frac{\sqrt{3}i}{2}23i