$(x-2)^3$ を展開し、与えられた式の空欄を埋める問題です。

代数学展開多項式公式
2025/4/5

1. 問題の内容

(x2)3(x-2)^3 を展開し、与えられた式の空欄を埋める問題です。

2. 解き方の手順

(x2)3(x-2)^3 を展開します。 (ab)3=a33a2b+3ab2b3(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 の公式を利用します。
a=x,b=2a = x, b = 2 を代入すると、
(x2)3=x33x2(2)+3x(22)23(x-2)^3 = x^3 - 3x^2(2) + 3x(2^2) - 2^3
=x36x2+12x8= x^3 - 6x^2 + 12x - 8
与えられた式と比較すると、x3x2+イウxx^3 - アx^2 + イウx - エ であるので、
ア = 6
イウ = 12
エ = 8

3. 最終的な答え

ア = 6
イウ = 12
エ = 8

「代数学」の関連問題

みかんが240個あり、4個入りの袋を $x$ 袋、6個入りの袋を $y$ 袋作った。6個入りの袋の数 $y$ は、4個入りの袋の数 $x$ の3倍より4袋少ない。このとき、$x$ と $y$ の関係式...

一次式方程式文章問題
2025/4/19

$(2x + 1)^7$ を二項定理を用いて展開します。

二項定理多項式の展開組み合わせ
2025/4/19

与えられた2つの2次関数 $f(x) = x^2 - 2x + 1$ と $g(x) = -x^2 + 2ax - 6a + 13$ があります。 (1) $0 \leq x \leq 3$ における...

二次関数最大値最小値不等式
2025/4/19

与えられた式 $\frac{2 \log 2}{2 \log 3}$ を簡略化して値を求める問題です。

対数底の変換公式計算
2025/4/19

問題は、$a(b - cx) = d(x - e)$ という方程式を $x$ について解くことです。

方程式一次方程式文字式の計算解の公式
2025/4/19

次の等式を満たす定数 $a$ と $b$ を求める問題です。 $\frac{x-1}{(x+2)(x+1)} = \frac{a}{x+2} + \frac{b}{x+1}$

部分分数分解連立方程式分数式
2025/4/19

与えられた式 $3x + y = xy + 1$ を $y$ について解きます。つまり、$y = f(x)$ の形に変形します。

方程式式の変形分数式
2025/4/19

与えられた数式 $\frac{\log_3 4}{\log_3 9}$ を簡単にせよ。

対数底の変換公式対数の性質
2025/4/19

問題は $(2x+1)^7$ を展開することです。

二項定理展開多項式
2025/4/19

与えられた式 $3^{log_9 4}$ を簡単にせよ。

対数指数底の変換公式指数法則
2025/4/19