導関数の定義に従って関数 $f(x) = (2x-1)^3$ を微分せよ。解析学微分導関数極限2025/7/311. 問題の内容導関数の定義に従って関数 f(x)=(2x−1)3f(x) = (2x-1)^3f(x)=(2x−1)3 を微分せよ。2. 解き方の手順導関数の定義は次の通りです。f′(x)=limh→0f(x+h)−f(x)hf'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}f′(x)=limh→0hf(x+h)−f(x)与えられた関数 f(x)=(2x−1)3f(x) = (2x-1)^3f(x)=(2x−1)3 を上記の定義に代入して計算します。f(x+h)=(2(x+h)−1)3=(2x+2h−1)3f(x+h) = (2(x+h) - 1)^3 = (2x + 2h - 1)^3f(x+h)=(2(x+h)−1)3=(2x+2h−1)3f′(x)=limh→0(2x+2h−1)3−(2x−1)3hf'(x) = \lim_{h \to 0} \frac{(2x + 2h - 1)^3 - (2x - 1)^3}{h}f′(x)=limh→0h(2x+2h−1)3−(2x−1)3ここで、A=2x−1A = 2x - 1A=2x−1 とおくと、2x+2h−1=A+2h2x+2h-1 = A+2h2x+2h−1=A+2h となるので、f′(x)=limh→0(A+2h)3−A3hf'(x) = \lim_{h \to 0} \frac{(A + 2h)^3 - A^3}{h}f′(x)=limh→0h(A+2h)3−A3(A+2h)3=A3+3A2(2h)+3A(2h)2+(2h)3=A3+6A2h+12Ah2+8h3(A+2h)^3 = A^3 + 3A^2(2h) + 3A(2h)^2 + (2h)^3 = A^3 + 6A^2h + 12Ah^2 + 8h^3(A+2h)3=A3+3A2(2h)+3A(2h)2+(2h)3=A3+6A2h+12Ah2+8h3f′(x)=limh→0A3+6A2h+12Ah2+8h3−A3hf'(x) = \lim_{h \to 0} \frac{A^3 + 6A^2h + 12Ah^2 + 8h^3 - A^3}{h}f′(x)=limh→0hA3+6A2h+12Ah2+8h3−A3f′(x)=limh→06A2h+12Ah2+8h3hf'(x) = \lim_{h \to 0} \frac{6A^2h + 12Ah^2 + 8h^3}{h}f′(x)=limh→0h6A2h+12Ah2+8h3f′(x)=limh→0(6A2+12Ah+8h2)f'(x) = \lim_{h \to 0} (6A^2 + 12Ah + 8h^2)f′(x)=limh→0(6A2+12Ah+8h2)h→0h \to 0h→0 の極限を取ると、f′(x)=6A2f'(x) = 6A^2f′(x)=6A2A=2x−1A = 2x - 1A=2x−1 を代入して、f′(x)=6(2x−1)2f'(x) = 6(2x - 1)^2f′(x)=6(2x−1)2f′(x)=6(4x2−4x+1)f'(x) = 6(4x^2 - 4x + 1)f′(x)=6(4x2−4x+1)f′(x)=24x2−24x+6f'(x) = 24x^2 - 24x + 6f′(x)=24x2−24x+63. 最終的な答えf′(x)=24x2−24x+6f'(x) = 24x^2 - 24x + 6f′(x)=24x2−24x+6