与えられた関数 $y = \cos x^3$ の微分を求めなさい。

解析学微分合成関数連鎖律三角関数
2025/8/2
はい、承知いたしました。

1. 問題の内容

与えられた関数 y=cosx3y = \cos x^3 の微分を求めなさい。

2. 解き方の手順

この関数は合成関数なので、連鎖律(chain rule)を使って微分します。連鎖律は、関数 y=f(g(x))y = f(g(x)) の導関数が dydx=dfdgdgdx\frac{dy}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} で与えられるというものです。
まず、u=x3u = x^3 とおくと、y=cosuy = \cos u となります。
dydu=sinu\frac{dy}{du} = -\sin u
dudx=3x2\frac{du}{dx} = 3x^2
したがって、連鎖律より
dydx=dydududx=(sinu)(3x2)=sin(x3)3x2=3x2sin(x3)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = (-\sin u) \cdot (3x^2) = -\sin(x^3) \cdot 3x^2 = -3x^2 \sin(x^3)

3. 最終的な答え

dydx=3x2sin(x3)\frac{dy}{dx} = -3x^2 \sin(x^3)

「解析学」の関連問題

与えられた関数を微分する問題です。具体的には、対数関数、指数関数、それらの組み合わせの微分を求めます。

微分対数関数指数関数合成関数の微分積の微分商の微分
2025/8/3

以下の関数を微分する問題です。 問1: $y = (5x + 1)^{-2}$ 問2: $y = \sqrt{x^2 + 1}$ 問3: $y = -\frac{1}{2\sqrt[3]{(2x^2 ...

微分合成関数の微分積の微分商の微分
2025/8/3

関数 $f(x) = \log(1 + x - 6x^2)$ のマクローリン展開を求める問題です。

マクローリン展開対数関数級数
2025/8/3

次の4つの関数を微分する問題です。 問1: $y = (2x + 1)(x^2 - 1)$ 問2: $y = \frac{x+1}{3x-2}$ 問3: $y = (x^2 + 3x)^4$ 問4: ...

微分導関数積の微分商の微分合成関数の微分
2025/8/3

問題は2つの関数の導関数を求めることです。 一つ目の関数は $y = \sqrt{x}$ であり、二つ目の関数は $y = \frac{1}{3\sqrt[3]{x^2}}$ です。

微分導関数べき乗の微分関数の微分
2025/8/3

与えられた関数を微分する問題です。具体的には、以下の4つの関数を微分します。 問1: $y = (2x + 1)(x^2 - 1)$ 問2: $y = \frac{x+1}{3x-2}$ 問3: $y...

微分導関数積の微分商の微分合成関数の微分
2025/8/3

問題は以下の2つです。 * 関数 $f(x) = 3x^2 - 2x$ に対して、$f(1)$、$f(a)$、$f(a+h)$ を求める。 * 関数 $f(x) = 3x^2 - 2x$ の導...

関数導関数微分極限
2025/8/3

以下の極限を求める問題です。 * 問3: $\lim_{x \to \infty} -\frac{1}{x^2}$ * 問4: $\lim_{x \to 0} \sin{x}$ * 問5:...

極限関数の極限数列の極限連続性有理化
2025/8/3

この問題は、三角関数の値を求める問題と、関数の極限を求める問題の2つの部分から構成されています。 三角関数の問題では、$sin(30^{\circ})$、$cos(45^{\circ})$、$tan(...

三角関数極限微分積分
2025/8/3

与えられた関数 $f(x) = (x^4 + x^2)^5 + (x^8 + 1)^4$ の導関数 $f'(x)$ を求める。

導関数微分合成関数の微分多項式
2025/8/3