関数 $y = \sin(x^2)$ を微分せよ。

解析学微分合成関数三角関数
2025/8/2

1. 問題の内容

関数 y=sin(x2)y = \sin(x^2) を微分せよ。

2. 解き方の手順

合成関数の微分を用いる。
y=sin(u)y = \sin(u)u=x2u = x^2 とおくと、
dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
となる。
まず、y=sin(u)y = \sin(u)uu で微分すると、
dydu=cos(u)\frac{dy}{du} = \cos(u)
次に、u=x2u = x^2xx で微分すると、
dudx=2x\frac{du}{dx} = 2x
したがって、
dydx=dydududx=cos(u)2x=cos(x2)2x=2xcos(x2)\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos(u) \cdot 2x = \cos(x^2) \cdot 2x = 2x \cos(x^2)

3. 最終的な答え

dydx=2xcos(x2)\frac{dy}{dx} = 2x\cos(x^2)

「解析学」の関連問題

与えられた関数を微分する問題です。具体的には、対数関数、指数関数、それらの組み合わせの微分を求めます。

微分対数関数指数関数合成関数の微分積の微分商の微分
2025/8/3

以下の関数を微分する問題です。 問1: $y = (5x + 1)^{-2}$ 問2: $y = \sqrt{x^2 + 1}$ 問3: $y = -\frac{1}{2\sqrt[3]{(2x^2 ...

微分合成関数の微分積の微分商の微分
2025/8/3

関数 $f(x) = \log(1 + x - 6x^2)$ のマクローリン展開を求める問題です。

マクローリン展開対数関数級数
2025/8/3

次の4つの関数を微分する問題です。 問1: $y = (2x + 1)(x^2 - 1)$ 問2: $y = \frac{x+1}{3x-2}$ 問3: $y = (x^2 + 3x)^4$ 問4: ...

微分導関数積の微分商の微分合成関数の微分
2025/8/3

問題は2つの関数の導関数を求めることです。 一つ目の関数は $y = \sqrt{x}$ であり、二つ目の関数は $y = \frac{1}{3\sqrt[3]{x^2}}$ です。

微分導関数べき乗の微分関数の微分
2025/8/3

与えられた関数を微分する問題です。具体的には、以下の4つの関数を微分します。 問1: $y = (2x + 1)(x^2 - 1)$ 問2: $y = \frac{x+1}{3x-2}$ 問3: $y...

微分導関数積の微分商の微分合成関数の微分
2025/8/3

問題は以下の2つです。 * 関数 $f(x) = 3x^2 - 2x$ に対して、$f(1)$、$f(a)$、$f(a+h)$ を求める。 * 関数 $f(x) = 3x^2 - 2x$ の導...

関数導関数微分極限
2025/8/3

以下の極限を求める問題です。 * 問3: $\lim_{x \to \infty} -\frac{1}{x^2}$ * 問4: $\lim_{x \to 0} \sin{x}$ * 問5:...

極限関数の極限数列の極限連続性有理化
2025/8/3

この問題は、三角関数の値を求める問題と、関数の極限を求める問題の2つの部分から構成されています。 三角関数の問題では、$sin(30^{\circ})$、$cos(45^{\circ})$、$tan(...

三角関数極限微分積分
2025/8/3

与えられた関数 $f(x) = (x^4 + x^2)^5 + (x^8 + 1)^4$ の導関数 $f'(x)$ を求める。

導関数微分合成関数の微分多項式
2025/8/3