A店ではお弁当1個300円、B店では10個まで1個320円、10個を超えた分は1個240円で販売している。A店とB店で同じ数のお弁当を注文するとき、B店の方が安くなるのは何個以上注文したときか。

算数文章問題不等式価格計算
2025/8/3

1. 問題の内容

A店ではお弁当1個300円、B店では10個まで1個320円、10個を超えた分は1個240円で販売している。A店とB店で同じ数のお弁当を注文するとき、B店の方が安くなるのは何個以上注文したときか。

2. 解き方の手順

お弁当の個数を xx とします。
A店での代金は 300x300x 円です。
B店での代金は、
- x10x \le 10 のとき、320x320x
- x>10x > 10 のとき、320×10+240(x10)=3200+240x2400=240x+800320 \times 10 + 240(x-10) = 3200 + 240x - 2400 = 240x + 800
B店の方が安くなる条件は、300x>300x > (B店の代金) となることです。
まず、x10x \le 10 の場合を考えます。
300x>320x300x > 320x
20x>0-20x > 0
x<0x < 0
これは x10x \le 10 の条件を満たさないので、答えにはなりません。
次に、x>10x > 10 の場合を考えます。
300x>240x+800300x > 240x + 800
60x>80060x > 800
x>80060=403=13.333...x > \frac{800}{60} = \frac{40}{3} = 13.333...
xx は整数なので、x14x \ge 14 となります。
したがって、B店の方が安くなるのは14個以上注文したときです。

3. 最終的な答え

14

「算数」の関連問題

与えられた順列 ($nPr$) および階乗 ($n!$) の計算問題を解く。

順列階乗組み合わせ
2025/8/3

30以下の自然数において、4の倍数の集合をA、6の倍数の集合をBとするとき、以下の集合の要素の個数を求める問題です。 (1) $n(B)$ (2) $n(A \cap B)$ (3) $n(A \cu...

集合倍数要素の個数和集合共通部分補集合
2025/8/3

ある自然数全体の集合において、4の倍数の集合をA、6の倍数の集合をBとするとき、集合 $A \cap B$ の要素の個数 $n(A \cap B)$ を求めよ。ただし、答えは9と与えられている。問題文...

集合倍数最小公倍数
2025/8/3

30以下の自然数のうち、4の倍数の集合をA、6の倍数の集合をBとする。以下の集合の要素の個数を求める問題。(集合の指定が問題文にありませんでした。)

集合倍数要素の個数和集合共通部分
2025/8/3

与えられた式 $\frac{\sqrt{5}}{\sqrt{3}}$ の分母を有理化し、$\frac{\sqrt{\text{ケコ}}}{\text{サ}}$ の形に変形するときの、ケ、コ、サに入る数...

分母の有理化平方根計算
2025/8/3

$(\sqrt{3} - \sqrt{2})^2$ を計算し、その結果を「オ - カ $\sqrt{}$ キ」の形式で表す問題です。

平方根計算展開
2025/8/3

$\sqrt{8} - \sqrt{18}$ を $ウ\sqrt{エ}$ の形に簡単化する問題です。

根号平方根の計算式の簡単化
2025/8/3

$\sqrt{6} \times \sqrt{3}$ を計算し、その結果を $A\sqrt{B}$ の形で表す。ここで、$A$ と $B$ はそれぞれ整数である。

平方根計算数の計算
2025/8/3

30以下の自然数のうち、4の倍数の集合をA、6の倍数の集合をBとするとき、以下の集合の要素の個数を求める問題です。 (1) $n(B)$:集合B(6の倍数)の要素の個数 (2) $n(A \cap B...

集合倍数要素数和集合共通部分
2025/8/3

次のア~エの中から正しいものを全て選び、記号で答える問題です。 ア. $\sqrt{2} < 2$ イ. $\sqrt{49} = \pm 7$ ウ. $\sqrt{18} \times \sqrt{...

平方根大小比較有理数無理数
2025/8/3