式 $16x^5y^4 \div 8xy^2$ を計算します。

代数学式の計算単項式指数法則
2025/4/5

1. 問題の内容

16x5y4÷8xy216x^5y^4 \div 8xy^2 を計算します。

2. 解き方の手順

まず、係数同士を計算します。16÷8=216 \div 8 = 2です。
次に、xxの指数を計算します。x5÷x=x51=x4x^5 \div x = x^{5-1} = x^4です。
次に、yyの指数を計算します。y4÷y2=y42=y2y^4 \div y^2 = y^{4-2} = y^2です。
したがって、16x5y4÷8xy2=2x4y216x^5y^4 \div 8xy^2 = 2x^4y^2となります。

3. 最終的な答え

2x4y22x^4y^2

「代数学」の関連問題

2次関数 $y = x^2 + x + 5$ のグラフの軸を求める問題です。

二次関数平方完成グラフの軸
2025/4/20

二次関数 $y = -3(x+2)^2 - 3$ のグラフは、二次関数 $y = -3x^2$ のグラフを $x$軸方向と $y$軸方向にそれぞれどれだけ平行移動したものか求めよ。

二次関数平行移動グラフ
2025/4/20

与えられた式 $(6 - 2\sqrt{5})(2 + \sqrt{5})$ を展開せよ。

展開根号式の計算
2025/4/20

与えられた2つの2次関数 $f(x) = x^2 - 2x + 1$ と $g(x) = -x^2 + 2ax - 6a + 13$ があります。 (1) $0 \le x \le 3$ における $...

二次関数最大値最小値不等式関数の定義域場合分け
2025/4/20

画像に書かれた計算問題を解く。問題は分数と指数関数を含んでいる。画像から問題を読み取ると、 $\frac{336}{7.17 - e^{-1.17}}$ となる。

指数関数分数計算
2025/4/20

与えられた式 $(x-2)(x+1)(x+2)(x+5)$ を展開する問題です。

多項式の展開因数分解代数式
2025/4/20

$k$ は定数とする。関数 $f(x) = (x^2 + 2x + 2)^2 - 2k(x^2 + 2x + 2) + k$ について、以下の問いに答える。 (1) $t = x^2 + 2x + 2...

二次関数最大値最小値平方完成関数のグラフ
2025/4/20

与えられた式 $(3x+1)^2 (3x-1)^2$ を計算し、できるだけ簡単な形で表す問題です。

展開多項式因数分解
2025/4/20

関数 $y = -x^2$ において、$x$ の変域が $-1 \le x \le 4$ のとき、$y$ の変域を求めよ。

二次関数放物線関数の変域最大値最小値
2025/4/20

$\frac{x+y}{5} = \frac{y+z}{6} = \frac{z+x}{7}$ のとき、$\frac{xy+yz+zx}{x^2+y^2+z^2}$ の値を求めよ。ただし、$x, y,...

連立方程式式の計算分数式
2025/4/20