(1)
α=21+i3=cos(3π)+isin(3π)=ei3π と表せる。 したがって、
α10=(ei3π)10=ei310π=cos(310π)+isin(310π)=cos(34π)+isin(34π) cos(34π)=−21 sin(34π)=−23 よって、
α10=−21−i23 (2)
β=21+i=22(21+i21)=22(cos(4π)+isin(4π))=22ei4π β6=(22ei4π)6=(22)6ei46π=(42)3ei23π=81(2)3ei23π=81⋅8⋅(cos(23π)+isin(23π))=81⋅23ei23π=81⋅23/2⋅6ei23π=81⋅(2)6(cos(23π)+isin(23π))=81⋅8(0−i)=−i (3)
βα=21+i21+i3=1+i1+i3=(1+i)(1−i)(1+i3)(1−i)=1−i21−i+i3−i23=21−i+i3+3=21+3+i23−1 βα−2=21+3−2+i23−1=21+3−4+i23−1=23−3+i23−1 (βα−2)4=((βα−2)2)2 (βα−2)2=(23−3+i23−1)2=(23−3)2+2(23−3)(23−1)i−(23−1)2 =43−63+9−43−23+1+i(42(3−3−33+3))=412−63−4+23+i(26−43)=48−43+i(3−23)=2−3+i(3−23) (βα−2)4=(2−3+i(3−23))2=(2−3)2−(3−23)2+2(2−3)(3−23)i =(4−43+3)−(9−123+12)+2(6−43−33+6)i=7−43−21+123+2(12−73)i=−14+83+(24−143)i α=eiπ/3=cos(π/3)+isin(π/3)=1/2+i3/2 β=21+i β=22(cosπ/4+isinπ/4)=22eiπ/4 α=eiπ/3 α/β−2=22eiπ/4eiπ/3−2=22ei(π/3−π/4)−2=2eiπ/12−2=2(cosπ/12+isinπ/12)−2=2(cos15+isin15)−2=2(46+2+i46−2)−2=423+2+i423−2−2=23+1+i23−1−2=(23+1−2)+i(23−1)=(23+1−4)+i(23−1)=(23−3)+i(23−1) (βα−2)4=((23−3)+i(23−1))4 wolfram alpha: ( (sqrt(3)-3)/2+i(sqrt(3)-1)/2 )^4 = -14 + 8 sqrt(3) + (24 - 14 sqrt(3)) i