はい、承知しました。画像にある計算問題を解きます。

代数学式の計算文字式整式
2025/8/4
はい、承知しました。画像にある計算問題を解きます。
**

1. 問題の内容**

以下の4つの計算問題を解きます。
(1) a2×3b÷aba^2 \times 3b \div ab
(2) 5y×8x3y÷10xy5y \times 8x^3y \div 10xy
(3) 10x2÷(5x)×3x10x^2 \div (-5x) \times 3x
(4) (16a2b)÷2a÷(4b)(-16a^2b) \div 2a \div (-4b)
**

2. 解き方の手順**

(1) a2×3b÷aba^2 \times 3b \div ab
まず、掛け算を計算します。
a2×3b=3a2ba^2 \times 3b = 3a^2b
次に、割り算を計算します。
3a2b÷ab=3a2bab3a^2b \div ab = \frac{3a^2b}{ab}
約分すると、
3a2bab=3a\frac{3a^2b}{ab} = 3a
(2) 5y×8x3y÷10xy5y \times 8x^3y \div 10xy
まず、掛け算を計算します。
5y×8x3y=40x3y25y \times 8x^3y = 40x^3y^2
次に、割り算を計算します。
40x3y2÷10xy=40x3y210xy40x^3y^2 \div 10xy = \frac{40x^3y^2}{10xy}
約分すると、
40x3y210xy=4x2y\frac{40x^3y^2}{10xy} = 4x^2y
(3) 10x2÷(5x)×3x10x^2 \div (-5x) \times 3x
まず、割り算を計算します。
10x2÷(5x)=10x25x=2x10x^2 \div (-5x) = \frac{10x^2}{-5x} = -2x
次に、掛け算を計算します。
2x×3x=6x2-2x \times 3x = -6x^2
(4) (16a2b)÷2a÷(4b)(-16a^2b) \div 2a \div (-4b)
まず、最初の割り算を計算します。
(16a2b)÷2a=16a2b2a=8ab(-16a^2b) \div 2a = \frac{-16a^2b}{2a} = -8ab
次に、2つ目の割り算を計算します。
8ab÷(4b)=8ab4b=2a-8ab \div (-4b) = \frac{-8ab}{-4b} = 2a
**

3. 最終的な答え**

(1) 3a3a
(2) 4x2y4x^2y
(3) 6x2-6x^2
(4) 2a2a

「代数学」の関連問題

与えられた連立一次方程式の拡大係数行列を書き、行基本変形を用いて解を求め、解の自由度を求めます。連立一次方程式は以下の通りです。 $ \begin{cases} 2x_1 - x_2 + 4x_3 +...

連立一次方程式行列行基本変形線形代数解の自由度
2025/8/4

成分が全て実数である $(m, n)$ 行列 $A$ に対して、$\text{rank}({}^t A A) = \text{rank}(A)$ であることを示す問題です。

線形代数行列ランク解空間次元定理転置
2025/8/4

(6)二次方程式 $ax^2 + bx - 3 = 0$ の2つの解が $x = 2$ と $x = -\frac{3}{2}$ であるとき、$a$ と $b$ の値を求める。 (7)$\sin 13...

二次方程式三角関数解と係数の関係
2025/8/4

$n$ は3以上の奇数とし、$A$ は $n$ 次正方行列で交代行列、すなわち ${}^t A = -A$ を満たすとする。 (1) $A$ の行列式 $|A|$ の値を求めよ。 (2) 命題「$A$...

行列交代行列行列式余因子行列
2025/8/4

$n$次正方行列$A = (a_{ij})$が与えられています。この行列の対角成分は全て2($a_{ii} = 2$)で、対角成分のすぐ隣の成分は全て-1($a_{i,i+1} = a_{i+1,i}...

行列式線形代数漸化式特性方程式
2025/8/4

一つ目の問題は、行列 $\begin{pmatrix} 1 & -2 & a & 1 \end{pmatrix}$ が与えられたときに、$a$ についての必要十分条件を求める問題です。 二つ目の問題は...

線形代数行列正則行列式
2025/8/4

二次関数 $y = -\frac{1}{2}x^2 + x + \frac{7}{2}$ のグラフの頂点の座標を求める問題です。

二次関数平方完成グラフ頂点
2025/8/4

直線 $y = 0.5x - 2$ に平行で、点 $(-1, 4.5)$ を通る直線の式を求める。

一次関数直線の式平行座標
2025/8/4

2次関数 $f(x) = -2x^2 + 4ax - 4a + 10$ ($a$ は定数)について、以下の問いに答えます。 (1) $f(x)$ の最大値を $a$ を用いて表します。 (2) $0 ...

二次関数最大値最小値平方完成二次方程式
2025/8/4

A校とB校の生徒数、および男女生徒数に関する情報が与えられています。A校の生徒数は300人、B校の生徒数は350人です。A校の男子生徒数はB校の男子生徒数より10人少なく、A校の女子生徒数はB校の女子...

連立方程式文章題線形代数
2025/8/4