与えられた対数の式を計算せよ。 $4 \log_4 \sqrt{2} + \frac{1}{2} \log_4 \frac{1}{8} - \frac{3}{2} \log_4 8$代数学対数対数計算対数の性質2025/3/111. 問題の内容与えられた対数の式を計算せよ。4log42+12log418−32log484 \log_4 \sqrt{2} + \frac{1}{2} \log_4 \frac{1}{8} - \frac{3}{2} \log_4 84log42+21log481−23log482. 解き方の手順まず、対数の性質を用いて、係数を対数の中に入れる。logaxn=nlogax \log_a x^n = n \log_a x logaxn=nlogaxこれを用いて式を変形する。4log42=log4(2)4=log44=1 4 \log_4 \sqrt{2} = \log_4 (\sqrt{2})^4 = \log_4 4 = 14log42=log4(2)4=log44=112log418=log4(18)12=log418=log4122 \frac{1}{2} \log_4 \frac{1}{8} = \log_4 (\frac{1}{8})^{\frac{1}{2}} = \log_4 \frac{1}{\sqrt{8}} = \log_4 \frac{1}{2\sqrt{2}} 21log481=log4(81)21=log481=log422132log48=log4832=log4(23)32=log4292=log4(212)9=log4(2)9=log4162=log4(24)2 \frac{3}{2} \log_4 8 = \log_4 8^{\frac{3}{2}} = \log_4 (2^3)^{\frac{3}{2}} = \log_4 2^{\frac{9}{2}} = \log_4 (2^{\frac{1}{2}})^9 = \log_4 (\sqrt{2})^9 = \log_4 16\sqrt{2} = \log_4 (2^4)\sqrt{2}23log48=log4823=log4(23)23=log4229=log4(221)9=log4(2)9=log4162=log4(24)2次に、対数の和と差を、対数の積と商に変換する。logax+logay=loga(xy) \log_a x + \log_a y = \log_a (xy) logax+logay=loga(xy)logax−logay=loga(xy) \log_a x - \log_a y = \log_a (\frac{x}{y}) logax−logay=loga(yx)与えられた式にこれらの性質を適用すると、log44+log4122−log4162=log4422−log4162 \log_4 4 + \log_4 \frac{1}{2\sqrt{2}} - \log_4 16\sqrt{2} = \log_4 \frac{4}{2\sqrt{2}} - \log_4 16\sqrt{2}log44+log4221−log4162=log4224−log4162=log4422162=log4422⋅162=log442⋅16⋅2=log4464=log4116 = \log_4 \frac{\frac{4}{2\sqrt{2}}}{16\sqrt{2}} = \log_4 \frac{4}{2\sqrt{2} \cdot 16\sqrt{2}} = \log_4 \frac{4}{2 \cdot 16 \cdot 2} = \log_4 \frac{4}{64} = \log_4 \frac{1}{16}=log4162224=log422⋅1624=log42⋅16⋅24=log4644=log4161=log44−2=−2log44=−2 = \log_4 4^{-2} = -2 \log_4 4 = -2 =log44−2=−2log44=−23. 最終的な答え-2