三角形ABCにおいて、Mは辺BCの中点であり、Gは三角形ABCの重心である。AM = 8のとき、線分MGの長さを求める。

幾何学幾何重心三角形中点線分の比
2025/8/6

1. 問題の内容

三角形ABCにおいて、Mは辺BCの中点であり、Gは三角形ABCの重心である。AM = 8のとき、線分MGの長さを求める。

2. 解き方の手順

三角形の重心は、中線を2:1に内分する。すなわち、重心Gは中線AMをAG:GM = 2:1に分割する。
AMの長さが8なので、AM=AG+GM=8AM = AG + GM = 8である。
AG:GM=2:1AG:GM = 2:1であることから、AG=2GMAG = 2GMとなる。
AM=AG+GMAM = AG + GMAG=2GMAG = 2GMを代入すると、AM=2GM+GM=3GMAM = 2GM + GM = 3GMとなる。
したがって、3GM=83GM = 8である。
両辺を3で割ると、GM=83GM = \frac{8}{3}となる。

3. 最終的な答え

83\frac{8}{3}

「幾何学」の関連問題

与えられた三角錐PABCにおいて、AB = AC = 5cm, AP = 3cm, BC = 4cm, PQ : QB = PR : RC = 2 : 1である。 (1) 三角錐PABCの体積を求めよ...

三角錐体積三平方の定理相似
2025/8/7

対角線の長さが6cmの正方形を、頂点Oを中心に30度回転させたとき、影の部分の面積を求める問題です。

正方形回転面積三平方の定理扇形図形
2025/8/7

図において、$\triangle ABC$は$AB=AC$の二等辺三角形で、$\angle BAC = 60^\circ$である。また、点Oは円の中心であり、$OD=5$である。このとき、$x$の値を...

三角形二等辺三角形正三角形三平方の定理三角比
2025/8/7

図において、$x$の値を求める問題です。図には、円の中心Oから弦に下ろした垂線が4、弦の長さが20、円の半径がxと示されています。

三平方の定理半径図形
2025/8/7

長方形ABCDがあり、半円Oは辺ABとADに接している。円Pは辺ADとCDに接しており、半円Oと円Pは接している。AB=8cm、AD=18cmのとき、円Pの半径を求める。

長方形三平方の定理接する半径
2025/8/7

長方形ABCDの中に、点Oを中心とする半円と、点Pを中心とする円が内接している。AB = 8cm, AD = 18cmであるとき、点Pを中心とする円の半径を求めよ。

長方形内接ピタゴラスの定理相似
2025/8/7

放物線 $y = \frac{1}{4}x^2$ 上に点A, B, Cがある。Aのx座標は-4, Bのx座標は-2, Cのx座標は8である。点Bを通り、三角形ABCの面積を二等分する直線を求めよ。

放物線三角形面積直線座標連立方程式
2025/8/7

次の3つの関数について、グラフを記入することを求められています。 (1) $y = x - 3$ (2) $y = -2x + 1$ (3) $y = -2x^2$

グラフ関数直線放物線座標
2025/8/7

半径が3cmの円Oと半径が4cmの円O'がある。直線lは円Oと点Aで、円O'と点Bで接している。ABの長さを求める。

接線三平方の定理相似図形
2025/8/7

問題は、与えられた図において、直線ABの式と影の部分の三角形の面積を求めることです。今回は問題番号(1)のみを解きます。放物線 $y=x^2$ 上の2点A(-2, 4), B(3, 9)を通る直線AB...

直線の式三角形の面積座標平面図形
2025/8/7