$x = \frac{\sqrt{5}-1}{\sqrt{5}+1}$、 $y = \frac{\sqrt{5}+1}{\sqrt{5}-1}$のとき、$x^2 - y^2$の値を求める。代数学式の計算有理化因数分解平方根2025/4/61. 問題の内容x=5−15+1x = \frac{\sqrt{5}-1}{\sqrt{5}+1}x=5+15−1、 y=5+15−1y = \frac{\sqrt{5}+1}{\sqrt{5}-1}y=5−15+1のとき、x2−y2x^2 - y^2x2−y2の値を求める。2. 解き方の手順まず、xxxとyyyをそれぞれ有理化します。xxxの分母と分子に5−1\sqrt{5}-15−1をかけます。x=(5−1)(5−1)(5+1)(5−1)=5−25+15−1=6−254=3−52x = \frac{(\sqrt{5}-1)(\sqrt{5}-1)}{(\sqrt{5}+1)(\sqrt{5}-1)} = \frac{5 - 2\sqrt{5} + 1}{5 - 1} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2}x=(5+1)(5−1)(5−1)(5−1)=5−15−25+1=46−25=23−5yyyの分母と分子に5+1\sqrt{5}+15+1をかけます。y=(5+1)(5+1)(5−1)(5+1)=5+25+15−1=6+254=3+52y = \frac{(\sqrt{5}+1)(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)} = \frac{5 + 2\sqrt{5} + 1}{5 - 1} = \frac{6 + 2\sqrt{5}}{4} = \frac{3 + \sqrt{5}}{2}y=(5−1)(5+1)(5+1)(5+1)=5−15+25+1=46+25=23+5次に、x2−y2x^2 - y^2x2−y2 を計算します。x2−y2=(x+y)(x−y)x^2 - y^2 = (x+y)(x-y)x2−y2=(x+y)(x−y)を利用します。x+y=3−52+3+52=3−5+3+52=62=3x+y = \frac{3 - \sqrt{5}}{2} + \frac{3 + \sqrt{5}}{2} = \frac{3 - \sqrt{5} + 3 + \sqrt{5}}{2} = \frac{6}{2} = 3x+y=23−5+23+5=23−5+3+5=26=3x−y=3−52−3+52=3−5−3−52=−252=−5x-y = \frac{3 - \sqrt{5}}{2} - \frac{3 + \sqrt{5}}{2} = \frac{3 - \sqrt{5} - 3 - \sqrt{5}}{2} = \frac{-2\sqrt{5}}{2} = -\sqrt{5}x−y=23−5−23+5=23−5−3−5=2−25=−5したがって、x2−y2=(x+y)(x−y)=3×(−5)=−35x^2 - y^2 = (x+y)(x-y) = 3 \times (-\sqrt{5}) = -3\sqrt{5}x2−y2=(x+y)(x−y)=3×(−5)=−353. 最終的な答えx2−y2=−35x^2 - y^2 = -3\sqrt{5}x2−y2=−35