順列 $_nP_r$ と階乗 $n!$ の値を計算する問題です。算数順列階乗組み合わせ2025/8/71. 問題の内容順列 nPr_nP_rnPr と階乗 n!n!n! の値を計算する問題です。2. 解き方の手順(1) 8P2=8!(8−2)!=8!6!=8×7=56_8P_2 = \frac{8!}{(8-2)!} = \frac{8!}{6!} = 8 \times 7 = 568P2=(8−2)!8!=6!8!=8×7=56(2) 6P3=6!(6−3)!=6!3!=6×5×4=120_6P_3 = \frac{6!}{(6-3)!} = \frac{6!}{3!} = 6 \times 5 \times 4 = 1206P3=(6−3)!6!=3!6!=6×5×4=120(3) 5P1=5!(5−1)!=5!4!=5_5P_1 = \frac{5!}{(5-1)!} = \frac{5!}{4!} = 55P1=(5−1)!5!=4!5!=5(4) 10P4=10!(10−4)!=10!6!=10×9×8×7=5040_{10}P_4 = \frac{10!}{(10-4)!} = \frac{10!}{6!} = 10 \times 9 \times 8 \times 7 = 504010P4=(10−4)!10!=6!10!=10×9×8×7=5040(5) 12P3=12!(12−3)!=12!9!=12×11×10=1320_{12}P_3 = \frac{12!}{(12-3)!} = \frac{12!}{9!} = 12 \times 11 \times 10 = 132012P3=(12−3)!12!=9!12!=12×11×10=1320(6) 4P4=4!(4−4)!=4!0!=4×3×2×1=24_4P_4 = \frac{4!}{(4-4)!} = \frac{4!}{0!} = 4 \times 3 \times 2 \times 1 = 244P4=(4−4)!4!=0!4!=4×3×2×1=24(7) 2!=2×1=22! = 2 \times 1 = 22!=2×1=2(8) 3!=3×2×1=63! = 3 \times 2 \times 1 = 63!=3×2×1=6(9) 6!=6×5×4×3×2×1=7206! = 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 7206!=6×5×4×3×2×1=720(10) 8!=8×7×6×5×4×3×2×1=403208! = 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 403208!=8×7×6×5×4×3×2×1=403203. 最終的な答え(1) 56(2) 120(3) 5(4) 5040(5) 1320(6) 24(7) 2(8) 6(9) 720(10) 40320