四角形ABCDは平行四辺形であり、CDの延長線上にCD = DEとなる点Eをとる。線分EBとADの交点をFとするとき、AF = FDとなることを証明する。

幾何学平行四辺形合同証明線分
2025/8/8

1. 問題の内容

四角形ABCDは平行四辺形であり、CDの延長線上にCD = DEとなる点Eをとる。線分EBとADの交点をFとするとき、AF = FDとなることを証明する。

2. 解き方の手順

まず、三角形ABFと三角形DEFにおいて、合同を証明していく。
* 仮定より、CD = DE。平行四辺形ABCDの対辺より、AB = CD。したがって、AB = DE。(以下(1)とする)
* 平行四辺形の対辺より、AB//CD。したがって、AB//DE。錯角は等しいので、ABF=DEF∠ABF = ∠DEF。(2)
* 対頂角は等しいので、AFB=DFE∠AFB = ∠DFE。(3)
(1)(2)(3)より、1組の辺とその両端の角がそれぞれ等しいので、三角形ABFと三角形DEFは合同である。
したがって、AF = DFである。

3. 最終的な答え

AF = DF

「幾何学」の関連問題

三角形ABCにおいて、$AB = 10$, $\angle BAC = 60^\circ$, $\angle ABC = 75^\circ$のとき、$BC$と$CA$の長さを求めよ。

三角形正弦定理三角比
2025/8/8

長方形ABCDにおいて、$AB = 8\ cm$, $BC = 16\ cm$である。点Pは辺AB上を毎秒1cmの速さでAからBへ、点Qは辺BC上を毎秒2cmの速さでBからCへ移動する。PとQが同時に...

三角形の面積長方形動点二次関数
2025/8/8

長方形ABCDがあり、AB=8cm、BC=16cmです。点Pは辺AB上を毎秒1cmの速さでAからBへ、点Qは辺BC上を毎秒2cmの速さでBからCへ動きます。P,Qが同時に出発してからt秒後の三角形PB...

面積長方形直角三角形動点二次関数
2025/8/8

三角形ABCの面積を求める問題です。三角形の各頂点は、以下の3つの直線の交点として与えられています。 * $x - 2y = -5$ * $2x + 5y = -1$ * $4x + y ...

三角形面積座標連立方程式
2025/8/8

3つの直線 $y = -2x$, $y = -x - 1$, $y = x + 3$ で囲まれた三角形ABCの面積を求める問題です。

三角形面積座標直線
2025/8/8

図に示された三角形ABCの面積を求める問題です。三角形の頂点A, B, Cはそれぞれ、$y=x$と$y=\frac{1}{2}x - 1$の交点、直線$x=2$と$y=x$の交点、直線$x=2$と$y...

三角形面積座標一次関数
2025/8/8

次の三角形ABCの面積を求めよ。三角形ABCは、直線 $y = -\frac{1}{2}x + 1$、直線 $y = -x$、直線 $x = 2$ によって囲まれています。

三角形面積座標平面直線の交点図形
2025/8/8

3つの直線 $4x + y = -2$, $x - y = 2$, $2x + 3y = 4$ で囲まれた三角形ABCの面積を求める。

面積三角形座標直線交点
2025/8/8

1辺が $2cm$ の正方形と1辺が $6cm$ の正方形がある。これらの2つの正方形の面積の和に等しい面積を持つ正方形を作るとき、その正方形の1辺の長さを求める。

正方形面積平方根三平方の定理
2025/8/8

3つの直線 $y = -\frac{1}{4}x + 2$, $y = \frac{1}{2}x - 1$, $y = x - 1$で囲まれた三角形ABCの面積を求めよ。

三角形面積座標平面直線
2025/8/8