三角形ABCにおいて、$c = 3$, $a = 3\sqrt{3}$, $B = 30^\circ$のとき、$b$の値を求めよ。

幾何学三角形余弦定理辺の長さ三角比
2025/4/6

1. 問題の内容

三角形ABCにおいて、c=3c = 3, a=33a = 3\sqrt{3}, B=30B = 30^\circのとき、bbの値を求めよ。

2. 解き方の手順

余弦定理を用いてbbの値を求める。余弦定理は以下の通りである。
b2=a2+c22accosBb^2 = a^2 + c^2 - 2ac\cos B
与えられた値を代入する。
b2=(33)2+322(33)(3)cos30b^2 = (3\sqrt{3})^2 + 3^2 - 2(3\sqrt{3})(3)\cos 30^\circ
b2=27+9183cos30b^2 = 27 + 9 - 18\sqrt{3}\cos 30^\circ
cos30=32\cos 30^\circ = \frac{\sqrt{3}}{2} なので、
b2=3618332b^2 = 36 - 18\sqrt{3} \cdot \frac{\sqrt{3}}{2}
b2=361832b^2 = 36 - 18 \cdot \frac{3}{2}
b2=3627b^2 = 36 - 27
b2=9b^2 = 9
b=±3b = \pm 3
bbは三角形の辺の長さなので、b>0b > 0
したがって、b=3b = 3

3. 最終的な答え

b=3b = 3

「幾何学」の関連問題

五角形ABCDEの辺上を動く点Pがある。点PはAを出発し、毎秒1cmの速さでB, Cの順に通ってDまで動く。点PがAを出発してからx秒後の三角形APEの面積をy cm$^2$とする。以下の問いに答える...

図形面積グラフ関数移動
2025/4/12

一辺が4cmの正方形ABCDがあり、点Pが点Bから辺BC、CD上を毎秒1cmの速さでDまで移動する。 (1) 点Pが出発してから2秒後の三角形DBPの面積を求める。 (2) 点Pが出発してからx秒後の...

面積正方形移動グラフ一次関数
2025/4/12

(3) $\tan{\theta} = -2$ のとき、$\sin{\theta}$と$\cos{\theta}$の値を求める問題。 (4) $\cos{115^\circ}$ を $45^\circ...

三角比三角関数角度象限
2025/4/12

円に内接する四角形ABCDにおいて、$AB=6$, $BC=3$, $CD=6$, $\angle B = 120^\circ$のとき、$AC$, $AD$, 円の半径$R$, $\triangle ...

四角形余弦定理正弦定理内接円ヘロンの公式
2025/4/12

図に示された三角形について、指定された角度 $x$ と $y$ の値を求める問題です。 (1) 点Oは三角形ABCの外心です。 (2) 点Iは三角形ABCの内心です。

三角形外心内心角度二等辺三角形
2025/4/12

平行四辺形ABCDにおいて、対角線の交点をO、辺BCの中点をE、線分AEとBDの交点をFとする。このとき、線分AF:FEの比と、三角形AFOと平行四辺形ABCDの面積比を求める。

平行四辺形相似メネラウスの定理面積比
2025/4/12

三角形ABCにおいて、$AB = 4, BC = 5, CA = 6$である。$\angle BAC$の二等分線と辺$BC$との交点を$D$、$\angle BAC$の外角の二等分線と辺$BC$の延長...

三角形角の二等分線辺の長さ
2025/4/12

三角形ABCにおいて、$AB = 3$, $BC = \sqrt{7}$, $CA = 2$であるとき、角Aの大きさを求める問題です。

三角形余弦定理角度
2025/4/12

三角形ABCにおいて、角Bと角Cの二等分線が点Pで交わっている。角BPCの大きさが130度であるとき、角Aの大きさを求める。

三角形角度角の二等分線内角の和
2025/4/11

直角三角形ABCにおいて、$\angle A = 30^\circ$, $\angle B = 90^\circ$, $BC = 1$ である。辺AB上に $\angle CDB = 45^\circ...

直角三角形接弦定理方べきの定理面積
2025/4/11