1. 問題の内容
画像に示された分数の簡約問題を解きます。具体的には、(15)から(28)までの14個の分数をそれぞれ最も簡単な形に簡約します。
2. 解き方の手順
各分数の分子と分母の最大公約数(GCD)を見つけます。その後、分子と分母をその最大公約数で割ることで分数を簡約します。
(15) : GCD(16, 40) = 8。よって
(16) : GCD(21, 42) = 21。よって
(17) : GCD(15, 45) = 15。よって
(18) : GCD(12, 48) = 12。よって
(19) : GCD(40, 50) = 10。よって
(20) : GCD(44, 52) = 4。よって
(21) : GCD(48, 54) = 6。よって
(22) : GCD(42, 56) = 14。よって
(23) : GCD(12, 60) = 12。よって
(24) : GCD(36, 60) = 12。よって
(25) : GCD(56, 64) = 8。よって
(26) : GCD(15, 65) = 5。よって
(27) : GCD(51, 66) = 3。よって
(28) : GCD(15, 75) = 15。よって
3. 最終的な答え
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)