与えられた定積分 $\int_{1}^{4} (\frac{3}{5}x^2 + \frac{2}{5}x) dx$ を計算します。解析学定積分積分2025/4/61. 問題の内容与えられた定積分 ∫14(35x2+25x)dx\int_{1}^{4} (\frac{3}{5}x^2 + \frac{2}{5}x) dx∫14(53x2+52x)dx を計算します。2. 解き方の手順まず、積分記号の中の関数を積分します。∫(35x2+25x)dx=35∫x2dx+25∫xdx\int (\frac{3}{5}x^2 + \frac{2}{5}x) dx = \frac{3}{5} \int x^2 dx + \frac{2}{5} \int x dx∫(53x2+52x)dx=53∫x2dx+52∫xdx∫x2dx=13x3+C1\int x^2 dx = \frac{1}{3}x^3 + C_1∫x2dx=31x3+C1∫xdx=12x2+C2\int x dx = \frac{1}{2}x^2 + C_2∫xdx=21x2+C2したがって、∫(35x2+25x)dx=35(13x3)+25(12x2)+C=15x3+15x2+C\int (\frac{3}{5}x^2 + \frac{2}{5}x) dx = \frac{3}{5} (\frac{1}{3}x^3) + \frac{2}{5} (\frac{1}{2}x^2) + C = \frac{1}{5}x^3 + \frac{1}{5}x^2 + C∫(53x2+52x)dx=53(31x3)+52(21x2)+C=51x3+51x2+C次に、定積分を計算します。∫14(35x2+25x)dx=[15x3+15x2]14\int_{1}^{4} (\frac{3}{5}x^2 + \frac{2}{5}x) dx = [\frac{1}{5}x^3 + \frac{1}{5}x^2]_1^4∫14(53x2+52x)dx=[51x3+51x2]14=(15(43)+15(42))−(15(13)+15(12))= (\frac{1}{5}(4^3) + \frac{1}{5}(4^2)) - (\frac{1}{5}(1^3) + \frac{1}{5}(1^2))=(51(43)+51(42))−(51(13)+51(12))=(645+165)−(15+15)= (\frac{64}{5} + \frac{16}{5}) - (\frac{1}{5} + \frac{1}{5})=(564+516)−(51+51)=805−25=785= \frac{80}{5} - \frac{2}{5} = \frac{78}{5}=580−52=5783. 最終的な答え785\frac{78}{5}578