$\int_{0}^{\frac{\pi}{2}} x \cos^2 x dx$ を計算します。解析学積分定積分部分積分三角関数2025/8/141. 問題の内容∫0π2xcos2xdx\int_{0}^{\frac{\pi}{2}} x \cos^2 x dx∫02πxcos2xdx を計算します。2. 解き方の手順まず、cos2x\cos^2 xcos2x を倍角の公式を用いて変形します。cos2x=1+cos2x2\cos^2 x = \frac{1 + \cos 2x}{2}cos2x=21+cos2xしたがって、積分は∫0π2xcos2xdx=∫0π2x(1+cos2x2)dx=12∫0π2(x+xcos2x)dx\int_{0}^{\frac{\pi}{2}} x \cos^2 x dx = \int_{0}^{\frac{\pi}{2}} x \left(\frac{1 + \cos 2x}{2}\right) dx = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (x + x \cos 2x) dx∫02πxcos2xdx=∫02πx(21+cos2x)dx=21∫02π(x+xcos2x)dx=12∫0π2xdx+12∫0π2xcos2xdx= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} x dx + \frac{1}{2} \int_{0}^{\frac{\pi}{2}} x \cos 2x dx=21∫02πxdx+21∫02πxcos2xdx第一項は簡単に計算できます。12∫0π2xdx=12[x22]0π2=12((π2)22−0)=π216\frac{1}{2} \int_{0}^{\frac{\pi}{2}} x dx = \frac{1}{2} \left[\frac{x^2}{2}\right]_{0}^{\frac{\pi}{2}} = \frac{1}{2} \left(\frac{(\frac{\pi}{2})^2}{2} - 0\right) = \frac{\pi^2}{16}21∫02πxdx=21[2x2]02π=21(2(2π)2−0)=16π2第二項は部分積分を用いて計算します。u=xu = xu=x, dv=cos2xdxdv = \cos 2x dxdv=cos2xdx とすると、du=dxdu = dxdu=dx, v=12sin2xv = \frac{1}{2} \sin 2xv=21sin2x となります。∫0π2xcos2xdx=[x⋅12sin2x]0π2−∫0π212sin2xdx\int_{0}^{\frac{\pi}{2}} x \cos 2x dx = \left[x \cdot \frac{1}{2} \sin 2x\right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \frac{1}{2} \sin 2x dx∫02πxcos2xdx=[x⋅21sin2x]02π−∫02π21sin2xdx=[x2sin2x]0π2−12∫0π2sin2xdx= \left[\frac{x}{2} \sin 2x\right]_{0}^{\frac{\pi}{2}} - \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \sin 2x dx=[2xsin2x]02π−21∫02πsin2xdx=(π22sin(π)−0)−12[−12cos2x]0π2= \left(\frac{\frac{\pi}{2}}{2} \sin (\pi) - 0\right) - \frac{1}{2} \left[-\frac{1}{2} \cos 2x\right]_{0}^{\frac{\pi}{2}}=(22πsin(π)−0)−21[−21cos2x]02π=0−12(−12cosπ−(−12cos0))= 0 - \frac{1}{2} \left(-\frac{1}{2} \cos \pi - \left(-\frac{1}{2} \cos 0\right)\right)=0−21(−21cosπ−(−21cos0))=−12(−12(−1)+12)=−12(12+12)=−12= -\frac{1}{2} \left(-\frac{1}{2} (-1) + \frac{1}{2}\right) = -\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}\right) = -\frac{1}{2}=−21(−21(−1)+21)=−21(21+21)=−21したがって、12∫0π2xcos2xdx=12⋅(−12)=−14\frac{1}{2} \int_{0}^{\frac{\pi}{2}} x \cos 2x dx = \frac{1}{2} \cdot \left(-\frac{1}{2}\right) = -\frac{1}{4}21∫02πxcos2xdx=21⋅(−21)=−41求める積分はπ216−14=π2−416\frac{\pi^2}{16} - \frac{1}{4} = \frac{\pi^2 - 4}{16}16π2−41=16π2−43. 最終的な答えπ2−416\frac{\pi^2 - 4}{16}16π2−4