関数 $y = \log \sqrt{\frac{\cos x}{\sin x + 1}}$ を微分せよ。解析学微分対数関数三角関数2025/8/141. 問題の内容関数 y=logcosxsinx+1y = \log \sqrt{\frac{\cos x}{\sin x + 1}}y=logsinx+1cosx を微分せよ。2. 解き方の手順まず、対数の性質を用いて式を簡単にします。y=logcosxsinx+1=log(cosxsinx+1)12=12log(cosxsinx+1)y = \log \sqrt{\frac{\cos x}{\sin x + 1}} = \log \left(\frac{\cos x}{\sin x + 1}\right)^{\frac{1}{2}} = \frac{1}{2} \log \left(\frac{\cos x}{\sin x + 1}\right)y=logsinx+1cosx=log(sinx+1cosx)21=21log(sinx+1cosx)さらに、対数の性質を用いて、y=12(log(cosx)−log(sinx+1))y = \frac{1}{2} (\log (\cos x) - \log (\sin x + 1))y=21(log(cosx)−log(sinx+1))次に、この式をxxxで微分します。dydx=12(ddxlog(cosx)−ddxlog(sinx+1))\frac{dy}{dx} = \frac{1}{2} \left(\frac{d}{dx} \log (\cos x) - \frac{d}{dx} \log (\sin x + 1)\right)dxdy=21(dxdlog(cosx)−dxdlog(sinx+1))ddxlog(cosx)=1cosx⋅(−sinx)=−sinxcosx=−tanx\frac{d}{dx} \log (\cos x) = \frac{1}{\cos x} \cdot (-\sin x) = -\frac{\sin x}{\cos x} = -\tan xdxdlog(cosx)=cosx1⋅(−sinx)=−cosxsinx=−tanxddxlog(sinx+1)=1sinx+1⋅(cosx)=cosxsinx+1\frac{d}{dx} \log (\sin x + 1) = \frac{1}{\sin x + 1} \cdot (\cos x) = \frac{\cos x}{\sin x + 1}dxdlog(sinx+1)=sinx+11⋅(cosx)=sinx+1cosxしたがって、dydx=12(−tanx−cosxsinx+1)\frac{dy}{dx} = \frac{1}{2} \left(-\tan x - \frac{\cos x}{\sin x + 1}\right)dxdy=21(−tanx−sinx+1cosx)通分すると、dydx=12(−sinxcosx−cosxsinx+1)=12(−sinx(sinx+1)+cos2xcosx(sinx+1))\frac{dy}{dx} = \frac{1}{2} \left(-\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x + 1}\right) = \frac{1}{2} \left(-\frac{\sin x (\sin x + 1) + \cos^2 x}{\cos x (\sin x + 1)}\right)dxdy=21(−cosxsinx−sinx+1cosx)=21(−cosx(sinx+1)sinx(sinx+1)+cos2x)dydx=12(−sin2x+sinx+cos2xcosx(sinx+1))=12(−1+sinxcosx(sinx+1))\frac{dy}{dx} = \frac{1}{2} \left(-\frac{\sin^2 x + \sin x + \cos^2 x}{\cos x (\sin x + 1)}\right) = \frac{1}{2} \left(-\frac{1 + \sin x}{\cos x (\sin x + 1)}\right)dxdy=21(−cosx(sinx+1)sin2x+sinx+cos2x)=21(−cosx(sinx+1)1+sinx)dydx=12(−1cosx)=−12cosx=−12secx\frac{dy}{dx} = \frac{1}{2} \left(-\frac{1}{\cos x}\right) = -\frac{1}{2\cos x} = -\frac{1}{2} \sec xdxdy=21(−cosx1)=−2cosx1=−21secx3. 最終的な答えdydx=−12secx\frac{dy}{dx} = -\frac{1}{2} \sec xdxdy=−21secx