定積分 $\int_{0}^{\frac{\pi}{4}} x \tan^2 x dx$ の値を求める問題です。解析学定積分部分積分三角関数2025/8/141. 問題の内容定積分 ∫0π4xtan2xdx\int_{0}^{\frac{\pi}{4}} x \tan^2 x dx∫04πxtan2xdx の値を求める問題です。2. 解き方の手順まず、tan2x=sec2x−1\tan^2 x = \sec^2 x - 1tan2x=sec2x−1 を利用して、被積分関数を変形します。∫0π4xtan2xdx=∫0π4x(sec2x−1)dx=∫0π4xsec2xdx−∫0π4xdx\int_{0}^{\frac{\pi}{4}} x \tan^2 x dx = \int_{0}^{\frac{\pi}{4}} x (\sec^2 x - 1) dx = \int_{0}^{\frac{\pi}{4}} x \sec^2 x dx - \int_{0}^{\frac{\pi}{4}} x dx∫04πxtan2xdx=∫04πx(sec2x−1)dx=∫04πxsec2xdx−∫04πxdxここで、部分積分 ∫udv=uv−∫vdu\int u dv = uv - \int v du∫udv=uv−∫vdu を用いて、∫0π4xsec2xdx\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx∫04πxsec2xdx を計算します。u=xu = xu=x, dv=sec2xdxdv = \sec^2 x dxdv=sec2xdx とすると、du=dxdu = dxdu=dx, v=tanxv = \tan xv=tanx となります。∫0π4xsec2xdx=[xtanx]0π4−∫0π4tanxdx\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = [x \tan x]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \tan x dx∫04πxsec2xdx=[xtanx]04π−∫04πtanxdx=(π4tanπ4−0tan0)−∫0π4tanxdx= (\frac{\pi}{4} \tan \frac{\pi}{4} - 0 \tan 0) - \int_{0}^{\frac{\pi}{4}} \tan x dx=(4πtan4π−0tan0)−∫04πtanxdx=π4−∫0π4tanxdx= \frac{\pi}{4} - \int_{0}^{\frac{\pi}{4}} \tan x dx=4π−∫04πtanxdx∫0π4tanxdx=∫0π4sinxcosxdx\int_{0}^{\frac{\pi}{4}} \tan x dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} dx∫04πtanxdx=∫04πcosxsinxdxt=cosxt = \cos xt=cosx とおくと、dt=−sinxdxdt = -\sin x dxdt=−sinxdx となります。∫0π4sinxcosxdx=−∫1221tdt=−[ln∣t∣]122=−(ln22−ln1)=−ln22=−(ln2−ln2)=−(12ln2−ln2)=12ln2\int_{0}^{\frac{\pi}{4}} \frac{\sin x}{\cos x} dx = - \int_{1}^{\frac{\sqrt{2}}{2}} \frac{1}{t} dt = -[\ln |t|]_{1}^{\frac{\sqrt{2}}{2}} = - (\ln \frac{\sqrt{2}}{2} - \ln 1) = - \ln \frac{\sqrt{2}}{2} = - (\ln \sqrt{2} - \ln 2) = - (\frac{1}{2} \ln 2 - \ln 2) = \frac{1}{2} \ln 2∫04πcosxsinxdx=−∫122t1dt=−[ln∣t∣]122=−(ln22−ln1)=−ln22=−(ln2−ln2)=−(21ln2−ln2)=21ln2したがって、∫0π4xsec2xdx=π4−12ln2\int_{0}^{\frac{\pi}{4}} x \sec^2 x dx = \frac{\pi}{4} - \frac{1}{2} \ln 2∫04πxsec2xdx=4π−21ln2また、∫0π4xdx=[x22]0π4=(π4)22−0=π232\int_{0}^{\frac{\pi}{4}} x dx = [\frac{x^2}{2}]_{0}^{\frac{\pi}{4}} = \frac{(\frac{\pi}{4})^2}{2} - 0 = \frac{\pi^2}{32}∫04πxdx=[2x2]04π=2(4π)2−0=32π2よって、∫0π4xtan2xdx=(π4−12ln2)−π232=π4−π232−12ln2\int_{0}^{\frac{\pi}{4}} x \tan^2 x dx = (\frac{\pi}{4} - \frac{1}{2} \ln 2) - \frac{\pi^2}{32} = \frac{\pi}{4} - \frac{\pi^2}{32} - \frac{1}{2} \ln 2∫04πxtan2xdx=(4π−21ln2)−32π2=4π−32π2−21ln23. 最終的な答えπ4−π232−12ln2\frac{\pi}{4} - \frac{\pi^2}{32} - \frac{1}{2} \ln 24π−32π2−21ln2