与えられた式 $\frac{2m + 3n}{4} = 1$ を、$m$ について解く問題です。

代数学方程式式の変形文字式
2025/8/14

1. 問題の内容

与えられた式 2m+3n4=1\frac{2m + 3n}{4} = 1 を、mm について解く問題です。

2. 解き方の手順

まず、与えられた式
2m+3n4=1\frac{2m + 3n}{4} = 1
の両辺に4を掛けます。
2m+3n=42m + 3n = 4
次に、両辺から 3n3n を引きます。
2m=43n2m = 4 - 3n
最後に、両辺を2で割ります。
m=43n2m = \frac{4 - 3n}{2}

3. 最終的な答え

m=43n2m = \frac{4 - 3n}{2}

「代数学」の関連問題

次の方程式を解きます。 (1) $x - 4 = 4(x + 2)$ (2) $5(x - 6) = 6 - x$ (3) $8 - 5(1 - x) = 13$ (4) $5x - 2(x - 3)...

一次方程式方程式計算
2025/8/14

以下の3つの1次方程式をそれぞれ解きます。 (3) $9x - 13 = 6x + 14$ (4) $x + 17 = -3x - 19$ (5) $5x - 29 = 3x - 9$ (6) $-2...

一次方程式方程式解の公式
2025/8/14

$2x + \frac{1}{2x} = \sqrt{7}$のとき、次の式の値を求める問題です。 (1) $4x^2 + \frac{1}{4x^2}$ (2) $8x^3 + \frac{1}{8x...

式の計算分数式累乗
2025/8/14

与えられた2つの方程式をそれぞれ解く問題です。 (1) $4x - 7 = 2x - 1$ (2) $-6x + 20 = -9x + 41$

一次方程式方程式解法
2025/8/14

与えられた漸化式 $a_{n+2} = 3a_{n+1} + 2a_n$ と初期条件 $a_1 = 0$, $a_2 = 1$ から数列 $\{a_n\}$ の一般項を求める問題です。

数列漸化式特性方程式
2025/8/14

与えられた漸化式 $5a_{n+2} = 3a_{n+1} + 2a_n$ について、初期条件が(1) $a_1 = 1, a_2 = 2$の場合と、(2) $a_1 = 0, a_2 = 1$の場合...

漸化式特性方程式数列
2025/8/14

与えられた多項式 $P(x) = ax^4 + (b-a)x^3 + (1-2ab)x^2 + (ab-10)x + 2ab$ に対して、以下の問いに答える問題です。 (1) $P(x)$ が $x-...

多項式因数定理因数分解剰余の定理
2025/8/14

与えられた一次方程式を解く問題です。問題132の(1)から(6)と、問題133の(1)と(2)の合計8つの問題を解きます。

一次方程式方程式を解く
2025/8/14

2次不等式 $ax^2 + bx + 12 > 0$ の解が $-4 < x < 3$ となる時の、定数 $a$ と $b$ の値を求めます。

二次不等式解の範囲係数決定
2025/8/14

二次不等式 $x^2 - 6x + 9 \le 0$ を解きます。

二次不等式因数分解不等式解の公式
2025/8/14