画像に書かれている座標を読み取り、それぞれ座標のペアをまとめる問題です。画像には2つの問題があり、それぞれに2つの座標のペアが書かれています。

幾何学座標座標平面点の座標
2025/8/15

1. 問題の内容

画像に書かれている座標を読み取り、それぞれ座標のペアをまとめる問題です。画像には2つの問題があり、それぞれに2つの座標のペアが書かれています。

2. 解き方の手順

それぞれの問題番号に対応する座標のペアを書き出すだけです。
問題(3)の座標のペアは (2,1)(2, -1)(1,1)(1, -1) です。
問題(4)の座標のペアは (3,1)(3, -1)(3,4)(3, 4) です。

3. 最終的な答え

問題(3): (2,1)(2, -1), (1,1)(1, -1)
問題(4): (3,1)(3, -1), (3,4)(3, 4)

「幾何学」の関連問題

三角形ABCがあり、その内接円が辺AB, BC, CAとそれぞれ点P, Q, Rで接しています。AB = 10cm, BC = 12cm, CA = 8cmのとき、APの長さを求める問題です。

三角形内接円接線幾何
2025/8/15

ACを直径とする半円とBCを直径とする半円があり、大きい半円の弦AQが小さい半円に点Pで接している。QC:AC = 2:9のとき、∠QACの大きさとBP:PCを求めなさい。

相似接線角度
2025/8/15

右の図のように、AC、BCを直径とする2つの半円において、大きい半円の弦AQは小さい半円に点Pで接している。弧QC:弧AC = 2:9のとき、以下の問いに答える。 (1) ∠QACの大きさを求めなさい...

接線円周角中心角
2025/8/15

AC, BC を直径とする2つの半円があり、大きい半円の弦AQは小さい半円に点Pで接している。$QC:AC = 2:9$ のとき、(1) $\angle QAC$ の大きさを求めなさい。 (2) 弧 ...

円周角相似接線
2025/8/15

円に内接する五角形ABCDEがあり、円の中心をOとする。 $∠E = 67°$、$∠ABC = 67°$、$∠BAD = x$、$∠BCD = x$であるとき、$x$の値を求めよ。

五角形内接円周角の定理角度
2025/8/15

アからカの図形の中で、合同な三角形の組を1つ見つける問題です。

合同三角形合同条件
2025/8/15

ア~カの6つの三角形の中から、合同な三角形の組み合わせを1組だけ見つけ出す問題です。

合同三角形合同条件角度
2025/8/15

円周上に点A, B, C, D, Eがあり、線分ADは円の中心Oを通る。 $\angle E = 67^\circ$, $\angle EAD = 23^\circ$のとき、$\angle C$を$x...

円周角三角形角度
2025/8/15

図に示されたアからカの三角形の中から、合同な三角形の組み合わせを1組見つける問題です。

三角形合同合同条件角度辺の長さ
2025/8/15

図に示された五角形の頂点にある角度が与えられており、そのうちの一つの角度$x$の大きさを求める問題です。与えられている角度は25度、30度、50度、35度です。

多角形内角外角五角形角度
2025/8/15