7人の生徒を1人、2人、4人の3つの組に分ける方法は何通りあるか計算する問題です。

離散数学組み合わせ組み合わせ論場合の数
2025/4/6

1. 問題の内容

7人の生徒を1人、2人、4人の3つの組に分ける方法は何通りあるか計算する問題です。

2. 解き方の手順

まず、7人から1人を選ぶ組み合わせの数を計算します。これは 7C1_7C_1 で表されます。
次に、残りの6人から2人を選ぶ組み合わせの数を計算します。これは 6C2_6C_2 で表されます。
最後に、残りの4人から4人を選ぶ組み合わせの数を計算します。これは 4C4_4C_4 で表されます。
これらの組み合わせの数を掛け合わせると、7人を1人、2人、4人の組に分ける場合の数が求められます。
7C1=7!1!(71)!=7!1!6!=7×6!1×6!=7_7C_1 = \frac{7!}{1!(7-1)!} = \frac{7!}{1!6!} = \frac{7 \times 6!}{1 \times 6!} = 7
6C2=6!2!(62)!=6!2!4!=6×5×4!2×1×4!=6×52=15_6C_2 = \frac{6!}{2!(6-2)!} = \frac{6!}{2!4!} = \frac{6 \times 5 \times 4!}{2 \times 1 \times 4!} = \frac{6 \times 5}{2} = 15
4C4=4!4!(44)!=4!4!0!=4!4!×1=1_4C_4 = \frac{4!}{4!(4-4)!} = \frac{4!}{4!0!} = \frac{4!}{4! \times 1} = 1
したがって、7人を1人、2人、4人の組に分ける方法は、
7×15×1=1057 \times 15 \times 1 = 105 通りです。

3. 最終的な答え

105 通り

「離散数学」の関連問題

与えられた集合の部分集合をすべて求める問題です。具体的には、(1) $\{5, 10\}$ と (2) $\{a, b, c, d\}$ の部分集合をそれぞれ求めます。今回は(2)の問題$\{a, b...

集合部分集合組み合わせ
2025/5/13

全体集合 $U = \{1, 2, 3, 4, 5, 6\}$、部分集合 $A = \{1, 2, 3\}$、 $B = \{3, 6\}$ が与えられたとき、次の集合を求める問題です。 (1) $\...

集合集合演算補集合共通部分和集合
2025/5/13

集合 $B = \{x | x \text{ は } 2x \leq 8 \text{ を満たす自然数}\}$ について、その部分集合をすべて書き出す問題です。

集合部分集合要素集合の列挙
2025/5/13

全体集合 $U$ を10以下の自然数全体の集合とし、部分集合 $A = \{2, 3, 6, 8, 9\}$、$B = \{1, 3, 5, 8\}$ が与えられたとき、以下の集合を要素を書き並べて表...

集合集合演算補集合共通部分和集合
2025/5/13

問題は集合 $A$ と $B$ の共通部分 $A \cap B$ の補集合、つまり $\overline{A \cap B}$ を求めることです。

集合集合演算補集合ド・モルガンの法則
2025/5/13

全体集合をUとし、U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}とする。 集合B = {2, 4, 6, 8, 9, 10}とする。 集合Aが与えられたとき、集合Aとして適切な...

集合集合演算補集合共通部分集合論
2025/5/13

全体集合Uとその部分集合A, Bについて、n(U) = 60, n(A) = 30, n(B) = 25である。このとき、次の集合の要素数の最大値と最小値を求めよ。 (1) $n(A \cap B)$...

集合集合の要素数最大値最小値
2025/5/13

与えられたブール代数の式を証明する問題です。以下の5つの式を証明します。 (1) $AB + \overline{B} = A + \overline{B}$ (2) $(A+B)(\overline...

ブール代数論理式論理演算証明
2025/5/13

問題は、集合$A$と$B$の和集合$A \cup B$の要素の個数$n(A \cup B)$を求める公式を完成させる問題です。 (1) 一般の場合 (2) $A \cap B = \emptyset$...

集合集合の要素数和集合共通部分
2025/5/12

9個の要素を持つ集合Aの部分集合の総数を求める。さらに、Aの2つの特定の要素を含むAの部分集合の総数を求める。

集合部分集合組み合わせ
2025/5/12