次の定積分を求めよ。 $\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10})dx$解析学定積分積分計算2025/4/71. 問題の内容次の定積分を求めよ。∫12(310x2−210x+310)dx\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10})dx∫12(103x2−102x+103)dx2. 解き方の手順まず、不定積分を計算します。∫(310x2−210x+310)dx=310⋅x33−210⋅x22+310x+C=110x3−110x2+310x+C\int (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10})dx = \frac{3}{10} \cdot \frac{x^3}{3} - \frac{2}{10} \cdot \frac{x^2}{2} + \frac{3}{10}x + C = \frac{1}{10}x^3 - \frac{1}{10}x^2 + \frac{3}{10}x + C∫(103x2−102x+103)dx=103⋅3x3−102⋅2x2+103x+C=101x3−101x2+103x+C次に、定積分の値を求めます。∫12(310x2−210x+310)dx=[110x3−110x2+310x]12\int_{1}^{2} (\frac{3}{10}x^2 - \frac{2}{10}x + \frac{3}{10})dx = [\frac{1}{10}x^3 - \frac{1}{10}x^2 + \frac{3}{10}x]_{1}^{2}∫12(103x2−102x+103)dx=[101x3−101x2+103x]12=(110(2)3−110(2)2+310(2))−(110(1)3−110(1)2+310(1))= (\frac{1}{10}(2)^3 - \frac{1}{10}(2)^2 + \frac{3}{10}(2)) - (\frac{1}{10}(1)^3 - \frac{1}{10}(1)^2 + \frac{3}{10}(1))=(101(2)3−101(2)2+103(2))−(101(1)3−101(1)2+103(1))=(810−410+610)−(110−110+310)= (\frac{8}{10} - \frac{4}{10} + \frac{6}{10}) - (\frac{1}{10} - \frac{1}{10} + \frac{3}{10})=(108−104+106)−(101−101+103)=1010−310= \frac{10}{10} - \frac{3}{10}=1010−103=710= \frac{7}{10}=1073. 最終的な答え710\frac{7}{10}107