点Oを中心とする円周上に3点A, B, Cがある。$\angle BOC = 100^\circ$のとき、$\angle BAC$を求める問題です。

幾何学円周角角度
2025/4/7

1. 問題の内容

点Oを中心とする円周上に3点A, B, Cがある。BOC=100\angle BOC = 100^\circのとき、BAC\angle BACを求める問題です。

2. 解き方の手順

円周角の定理を利用します。円周角の定理とは、一つの弧に対する円周角は、その弧に対する中心角の半分であるというものです。この問題では、弧BCに対する中心角がBOC\angle BOC、円周角がBAC\angle BACです。
したがって、
BAC=12BOC\angle BAC = \frac{1}{2} \angle BOC
BAC=12×100\angle BAC = \frac{1}{2} \times 100^\circ
BAC=50\angle BAC = 50^\circ

3. 最終的な答え

BAC=50\angle BAC = 50^\circ

「幾何学」の関連問題

座標空間内の3点A(2, 4, 0), B(1, 1, 1), C(a, b, c)が一直線上にある。さらに、点Cがzx平面上にあるとき、aとcの値を求める。

ベクトル空間ベクトル直線座標空間
2025/6/18

円周上に異なる7点A, B, C, D, E, F, Gがある。これらの点を頂点とする四角形は全部で何個あるか。

組み合わせ図形四角形
2025/6/18

平面上の任意の4点A, B, C, Dに対して、ベクトル $\overrightarrow{BC} + \overrightarrow{DA}$ と等しいベクトルを、選択肢の中から選ぶ問題です。

ベクトルベクトルの加法平面ベクトル
2025/6/18

平面上の任意の4点A, B, C, Dに対して、ベクトル $\overrightarrow{AB} + \overrightarrow{DA}$ と等しいベクトルを選択肢の中から選びます。

ベクトルベクトルの和ベクトルの差図形
2025/6/18

平面上の任意の4点A, B, C, Dに対して、ベクトル $\overrightarrow{CB} - \overrightarrow{CD}$ と常に等しいベクトルを選択肢の中から選び出す問題です。

ベクトルベクトルの差幾何ベクトル
2025/6/18

平面上の任意の4点A, B, C, Dに対して、ベクトル $\overrightarrow{AB} + \overrightarrow{DA}$ と常に等しいベクトルを選択する問題です。

ベクトルベクトルの加法幾何学
2025/6/18

平面上に任意の4点A, B, C, Dがあるとき、$\vec{CD} + \vec{DA}$ と等しいベクトルを選びなさい。

ベクトルベクトルの加法図形
2025/6/18

与えられた図において、ベクトル $\vec{a} - \vec{b}$ と同じベクトルを選択する問題です。

ベクトルベクトルの減算図形
2025/6/18

問題は、与えられたベクトル$\overrightarrow{-b}$ と同じベクトルを、図の中から選ぶ問題です。

ベクトルベクトルの加減算ベクトルの向き
2025/6/18

与えられた図において、ベクトル $\vec{b}$ と同じベクトルを選ぶ問題です。

ベクトルベクトルの演算図形
2025/6/18