与えられた一次関数 $y = -\frac{2}{3}x - 2$ のグラフを描く問題です。

代数学一次関数グラフy切片x切片座標平面
2025/4/7

1. 問題の内容

与えられた一次関数 y=23x2y = -\frac{2}{3}x - 2 のグラフを描く問題です。

2. 解き方の手順

グラフを描くためには、少なくとも2つの点の座標が必要です。
* **y切片を求める:** x=0x = 0 の時の yy の値を求めます。
y=23(0)2=2y = -\frac{2}{3}(0) - 2 = -2
したがって、点 (0,2)(0, -2) を通ります。
* **x切片を求める:** y=0y = 0 の時の xx の値を求めます。
0=23x20 = -\frac{2}{3}x - 2
23x=2\frac{2}{3}x = -2
x=2×32=3x = -2 \times \frac{3}{2} = -3
したがって、点 (3,0)(-3, 0) を通ります。
* **グラフを描く:**
(0,2)(0, -2) と点 (3,0)(-3, 0) を通る直線をグラフ用紙に描きます。

3. 最終的な答え

グラフ用紙に、点 (0,2)(0, -2) と点 (3,0)(-3, 0) を通る直線を書く。

「代数学」の関連問題

与えられた2つの2次関数 $f(x) = x^2 - 2x + 1$ と $g(x) = -x^2 + 2ax - 6a + 13$ があります。 (1) $0 \le x \le 3$ における $...

二次関数最大値最小値不等式関数の定義域場合分け
2025/4/20

画像に書かれた計算問題を解く。問題は分数と指数関数を含んでいる。画像から問題を読み取ると、 $\frac{336}{7.17 - e^{-1.17}}$ となる。

指数関数分数計算
2025/4/20

与えられた式 $(x-2)(x+1)(x+2)(x+5)$ を展開する問題です。

多項式の展開因数分解代数式
2025/4/20

$k$ は定数とする。関数 $f(x) = (x^2 + 2x + 2)^2 - 2k(x^2 + 2x + 2) + k$ について、以下の問いに答える。 (1) $t = x^2 + 2x + 2...

二次関数最大値最小値平方完成関数のグラフ
2025/4/20

与えられた式 $(3x+1)^2 (3x-1)^2$ を計算し、できるだけ簡単な形で表す問題です。

展開多項式因数分解
2025/4/20

関数 $y = -x^2$ において、$x$ の変域が $-1 \le x \le 4$ のとき、$y$ の変域を求めよ。

二次関数放物線関数の変域最大値最小値
2025/4/20

$\frac{x+y}{5} = \frac{y+z}{6} = \frac{z+x}{7}$ のとき、$\frac{xy+yz+zx}{x^2+y^2+z^2}$ の値を求めよ。ただし、$x, y,...

連立方程式式の計算分数式
2025/4/20

関数 $y=2x^2$ において、$x$ の値が $1$ から $3$ まで増加するときの変化の割合を求めよ。

二次関数変化の割合
2025/4/20

次の方程式・不等式を解く問題です。 (1) $\sqrt[3]{9^x} = 3 \sqrt[4]{9^x}$ (2) $9^{x+1} + 80 \cdot 3^{x-1} - 1 = 0$ (3)...

指数不等式方程式指数関数対数関数
2025/4/20

与えられた多項式を整理する問題です。多項式は $2x - x^3 + xy - 3x^2 - y^2 + x^2y + 5$ です。

多項式整理次数
2025/4/20