$x = \frac{\sqrt{6}-2}{\sqrt{6}+2}$、 $y = \frac{\sqrt{6}+2}{\sqrt{6}-2}$のとき、$x^2 - 7xy + y^2$の値を求める。代数学式の計算有理化平方根式の値2025/4/81. 問題の内容x=6−26+2x = \frac{\sqrt{6}-2}{\sqrt{6}+2}x=6+26−2、 y=6+26−2y = \frac{\sqrt{6}+2}{\sqrt{6}-2}y=6−26+2のとき、x2−7xy+y2x^2 - 7xy + y^2x2−7xy+y2の値を求める。2. 解き方の手順まず、xyxyxyの値を計算する。xy=6−26+2⋅6+26−2=1xy = \frac{\sqrt{6}-2}{\sqrt{6}+2} \cdot \frac{\sqrt{6}+2}{\sqrt{6}-2} = 1xy=6+26−2⋅6−26+2=1次に、x+yx+yx+yの値を計算する。x+y=6−26+2+6+26−2=(6−2)2+(6+2)2(6+2)(6−2)=(6−46+4)+(6+46+4)6−4=202=10x+y = \frac{\sqrt{6}-2}{\sqrt{6}+2} + \frac{\sqrt{6}+2}{\sqrt{6}-2} = \frac{(\sqrt{6}-2)^2 + (\sqrt{6}+2)^2}{(\sqrt{6}+2)(\sqrt{6}-2)} = \frac{(6-4\sqrt{6}+4) + (6+4\sqrt{6}+4)}{6-4} = \frac{20}{2} = 10x+y=6+26−2+6−26+2=(6+2)(6−2)(6−2)2+(6+2)2=6−4(6−46+4)+(6+46+4)=220=10x2+y2=(x+y)2−2xyx^2 + y^2 = (x+y)^2 - 2xyx2+y2=(x+y)2−2xyなので、x2+y2=(10)2−2(1)=100−2=98x^2 + y^2 = (10)^2 - 2(1) = 100 - 2 = 98x2+y2=(10)2−2(1)=100−2=98したがって、x2−7xy+y2=x2+y2−7xy=98−7(1)=98−7=91x^2 - 7xy + y^2 = x^2 + y^2 - 7xy = 98 - 7(1) = 98 - 7 = 91x2−7xy+y2=x2+y2−7xy=98−7(1)=98−7=913. 最終的な答えx2−7xy+y2=91x^2 - 7xy + y^2 = 91x2−7xy+y2=91