右の図において、$\triangle ABC \sim \triangle DBA$ となることを証明する。ここで、$\angle BAC = 90^\circ$ であり、$AD \perp BC$ である。

幾何学相似三角形証明
2025/4/8

1. 問題の内容

右の図において、ABCDBA\triangle ABC \sim \triangle DBA となることを証明する。ここで、BAC=90\angle BAC = 90^\circ であり、ADBCAD \perp BC である。

2. 解き方の手順

2つの三角形 ABC\triangle ABCDBA\triangle DBA について、相似条件を示す。
(1) ABC\triangle ABC において BAC=90\angle BAC = 90^\circ
DBA\triangle DBA において BDA=90\angle BDA = 90^\circ
よって、BAC=BDA\angle BAC = \angle BDA
(2) ABC\angle ABC は共通の角なので、ABC=DBA\angle ABC = \angle DBA
(1)(2)より、2組の角がそれぞれ等しいので、ABCDBA\triangle ABC \sim \triangle DBA

3. 最終的な答え

ABCDBA\triangle ABC \sim \triangle DBA

「幾何学」の関連問題

三角形OABにおいて、$|OA|=3$, $|OB|=2$, $\angle AOB = 60^\circ$である。 三角形OABの垂心をHとし、直線OHと線分ABの交点をPとする。 (1) $\ve...

ベクトル内積三角形垂心線分の比
2025/6/21

問題は、$2 - \sqrt{3} = \tan(\theta)$を満たす$\theta$を求める問題です。ただし、単位は度数法とします。

三角関数tan角度加法定理
2025/6/21

与えられた点A, B, C, Dがそれぞれどの象限にあるかを答える問題です。点の座標は以下の通りです。 A(-3, 1) B(4, 3) C(1, -2) D(-2, -4)

座標平面象限座標
2025/6/21

直角三角形ABCにおいて、BC=4, CA=3, ∠ACB=90° とする。辺AB上にAD=xとなる点Dをとる。点DからBC, ACへ、それぞれ垂線DE, DFを引く。 (1) 長方形DECFの面積S...

直角三角形面積最大値相似二次関数
2025/6/21

半径 $r$ の円 $x^2 + y^2 = r^2$ と直線 $x + y - 6 = 0$ が接するとき、$r$ の値を求める問題です。

直線接する点と直線の距離
2025/6/21

問題133:2点A(4, -3), P(x, 9)間の距離が13であるとき、xの値を求める。 問題134:2点A(2, 5), P(6, y)間の距離が5であるとき、yの値を求める。

距離座標2点間の距離平方根
2025/6/21

問題185は、与えられた円と直線の共有点の個数を求める問題です。具体的には、以下の3つの組み合わせについて共有点の個数を求めます。 (1) 円:$x^2 + y^2 = 10$、直線:$3x + y ...

直線共有点判別式二次方程式
2025/6/21

問題184:次の円と直線の共有点の座標を求めよ。 (1) $x^2 + y^2 = 1$, $y = x - 1$

直線共有点座標
2025/6/21

円と直線の共有点の座標を求める問題です。 (1) 円 $x^2 + y^2 = 1$ と直線 $y = x - 1$ (2) 円 $x^2 + y^2 = 5$ と直線 $y = -x + 1$

直線共有点座標代入二次方程式
2025/6/21

はい、承知しました。問題の解答を以下に示します。

直線接する点と直線の距離半径
2025/6/21