半径 $r$ の円 $x^2 + y^2 = r^2$ と直線 $x + y - 6 = 0$ が接するとき、$r$ の値を求める問題です。

幾何学直線接する点と直線の距離
2025/6/21

1. 問題の内容

半径 rr の円 x2+y2=r2x^2 + y^2 = r^2 と直線 x+y6=0x + y - 6 = 0 が接するとき、rr の値を求める問題です。

2. 解き方の手順

円と直線が接するということは、円の中心と直線の距離が円の半径に等しいということです。
x2+y2=r2x^2 + y^2 = r^2 の中心は (0,0)(0, 0) であり、半径は rr です。
直線 x+y6=0x + y - 6 = 0 と点 (0,0)(0, 0) の距離 dd は、点と直線の距離の公式を用いて計算できます。
(x0,y0)(x_0, y_0) と直線 ax+by+c=0ax + by + c = 0 の距離 dd は、
d=ax0+by0+ca2+b2d = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}
で与えられます。
今回の場合は、(x0,y0)=(0,0)(x_0, y_0) = (0, 0)a=1a = 1, b=1b = 1, c=6c = -6 なので、
d=10+10612+12=62=62=622=32d = \frac{|1 \cdot 0 + 1 \cdot 0 - 6|}{\sqrt{1^2 + 1^2}} = \frac{|-6|}{\sqrt{2}} = \frac{6}{\sqrt{2}} = \frac{6\sqrt{2}}{2} = 3\sqrt{2}
円と直線が接するとき、この距離 dd が半径 rr に等しくなります。
したがって、r=32r = 3\sqrt{2} となります。

3. 最終的な答え

r=32r = 3\sqrt{2}

「幾何学」の関連問題

問題133:2点A(4, -3), P(x, 9)間の距離が13であるとき、xの値を求める。 問題134:2点A(2, 5), P(6, y)間の距離が5であるとき、yの値を求める。

距離座標2点間の距離平方根
2025/6/21

問題185は、与えられた円と直線の共有点の個数を求める問題です。具体的には、以下の3つの組み合わせについて共有点の個数を求めます。 (1) 円:$x^2 + y^2 = 10$、直線:$3x + y ...

直線共有点判別式二次方程式
2025/6/21

問題184:次の円と直線の共有点の座標を求めよ。 (1) $x^2 + y^2 = 1$, $y = x - 1$

直線共有点座標
2025/6/21

円と直線の共有点の座標を求める問題です。 (1) 円 $x^2 + y^2 = 1$ と直線 $y = x - 1$ (2) 円 $x^2 + y^2 = 5$ と直線 $y = -x + 1$

直線共有点座標代入二次方程式
2025/6/21

はい、承知しました。問題の解答を以下に示します。

直線接する点と直線の距離半径
2025/6/21

三角形ABCにおいて、辺a=2, b=3, c=4であるとき、cos Bの値を求めよ。

三角形余弦定理辺と角の関係
2025/6/21

問題は2つあります。 (6) 三角形ABCにおいて、$a=3$, $b=7$, $c=5$のとき、$\cos A$ を求めよ。 (7) 三角形ABCにおいて、$c=3\sqrt{3}$, $C=120...

三角形余弦定理正弦定理三角比外接円
2025/6/21

問題は2つあります。 (1) 三角形ABCにおいて、a=6, b=2, c=5のとき、cos Aの値を求めよ。 (2) 三角形ABCにおいて、c=$\sqrt{2}$, C=45°, B=30°のとき...

三角形余弦定理正弦定理三角比
2025/6/21

問題は、以下の2つの三角形に関する問題です。 * 三角形ABCにおいて、$a = 3$, $b = 7$, $c = 5$ のとき、$\cos A$ を求めよ。 * 三角形ABCにおいて、$a...

三角形余弦定理三角比
2025/6/21

問題10は、三角形ABCにおいて、a=3, b=7, c=5のとき、cosBの値を求める問題です。

三角形余弦定理三角比
2025/6/21