集合Aを「1以上50以下の3の倍数」、集合Bを「1以上50以下の4の倍数」とするとき、集合Aと集合Bの和集合の要素の個数 $n(A \cup B)$ を求めなさい。

代数学集合集合の要素数和集合共通部分
2025/4/8

1. 問題の内容

集合Aを「1以上50以下の3の倍数」、集合Bを「1以上50以下の4の倍数」とするとき、集合Aと集合Bの和集合の要素の個数 n(AB)n(A \cup B) を求めなさい。

2. 解き方の手順

まず、集合Aの要素数を求めます。50を3で割った商が、3の倍数の個数になります。
50÷3=1650 \div 3 = 16 あまり 2 なので、n(A)=16n(A) = 16です。
次に、集合Bの要素数を求めます。50を4で割った商が、4の倍数の個数になります。
50÷4=1250 \div 4 = 12 あまり 2 なので、n(B)=12n(B) = 12です。
次に、集合Aと集合Bの共通部分の要素数を求めます。AとBの共通部分は、3の倍数かつ4の倍数、つまり12の倍数です。50を12で割った商が、12の倍数の個数になります。
50÷12=450 \div 12 = 4 あまり 2 なので、n(AB)=4n(A \cap B) = 4です。
最後に、和集合の要素数を求める公式を使用します。
n(AB)=n(A)+n(B)n(AB)n(A \cup B) = n(A) + n(B) - n(A \cap B)
n(AB)=16+124=24n(A \cup B) = 16 + 12 - 4 = 24

3. 最終的な答え

24

「代数学」の関連問題

次の不等式を満たす最大の自然数 $n$ を求める問題です。 $4 + \frac{1}{5}(n-4) > \frac{1}{2}n$

不等式一次不等式自然数数式処理
2025/6/15

次の不等式を満たす最小の自然数 $n$ を求めよ。 $600 + 25(n-20) \le 32n$

不等式一次不等式自然数代数
2025/6/15

与えられた4つの数式を計算する問題です。 (1) $2^{\frac{3}{2}} \times 2^{\frac{4}{3}} \div 2^{\frac{5}{6}}$ (2) $3^{\frac...

指数指数法則根号計算
2025/6/15

2つの不等式を解く問題です。 (1) $1 \le x \le 15 - 2x$ (2) $-2 < 3x + 1 < 5$

不等式一次不等式不等式の解法
2025/6/15

数列 $\{a_n\}$ が与えられており、その一般項を求める問題です。数列の初項は $a_1 = 6$ であり、漸化式は $a_{n+1} = 4a_n - 3$ で与えられています。

数列漸化式特性方程式等比数列
2025/6/15

次の2つの連立不等式を解く問題です。 (1) $ \begin{cases} 6x - 9 < 2x - 1 \\ 3x + 7 \le 4(2x + 3) \end{cases} $ (2) $ \...

連立不等式不等式一次不等式
2025/6/15

数列 $\{a_n\}$ が、$a_1 = 3$ および漸化式 $2a_{n+1} - 2a_n = 4n^2 + 2n - 1$ を満たすとき、一般項 $a_n$ を求める問題です。

数列漸化式一般項
2025/6/15

与えられた漸化式を解いて一般項 $a_n$ を求める問題です。 (1) $a_1 = 2$, $a_{n+1} - a_n + \frac{1}{2} = 0$ (2) $a_1 = -1$, $a_...

漸化式数列等差数列等比数列
2025/6/15

## 1. 問題の内容

数列漸化式等差数列等比数列
2025/6/15

与えられた4つの数列の和をそれぞれ計算します。 (1) $\sum_{k=1}^{n} (4k+3)$ (2) $\sum_{k=1}^{n} (3k^2 - 7k + 4)$ (3) $\sum_{...

数列シグマ和の公式
2025/6/15