## 1. 問題の内容代数学数列漸化式等差数列等比数列2025/6/15##1. 問題の内容以下の3つの数列{an}\{a_n\}{an}の一般項を求めます。(1) a1=2a_1 = 2a1=2, an+1−an+12=0a_{n+1} - a_n + \frac{1}{2} = 0an+1−an+21=0(2) a1=−1a_1 = -1a1=−1, an+1+an=0a_{n+1} + a_n = 0an+1+an=0(3) a1=3a_1 = 3a1=3, 2an+1−2an=4n2+2n−12a_{n+1} - 2a_n = 4n^2 + 2n - 12an+1−2an=4n2+2n−1##2. 解き方の手順### (1)an+1−an+12=0a_{n+1} - a_n + \frac{1}{2} = 0an+1−an+21=0 より、 an+1−an=−12a_{n+1} - a_n = -\frac{1}{2}an+1−an=−21。これは等差数列なので、一般項はan=a1+(n−1)da_n = a_1 + (n-1)dan=a1+(n−1)dここで、a1=2a_1 = 2a1=2、d=−12d = -\frac{1}{2}d=−21 なので、an=2+(n−1)(−12)=2−12n+12=52−12na_n = 2 + (n-1)(-\frac{1}{2}) = 2 - \frac{1}{2}n + \frac{1}{2} = \frac{5}{2} - \frac{1}{2}nan=2+(n−1)(−21)=2−21n+21=25−21n### (2)an+1+an=0a_{n+1} + a_n = 0an+1+an=0 より、an+1=−ana_{n+1} = -a_nan+1=−an。これは公比が-1の等比数列なので、一般項はan=a1⋅rn−1a_n = a_1 \cdot r^{n-1}an=a1⋅rn−1ここで、a1=−1a_1 = -1a1=−1、r=−1r = -1r=−1 なので、an=−1⋅(−1)n−1=(−1)na_n = -1 \cdot (-1)^{n-1} = (-1)^nan=−1⋅(−1)n−1=(−1)n### (3)2an+1−2an=4n2+2n−12a_{n+1} - 2a_n = 4n^2 + 2n - 12an+1−2an=4n2+2n−1 より、an+1−an=2n2+n−12a_{n+1} - a_n = 2n^2 + n - \frac{1}{2}an+1−an=2n2+n−21。n≥2n \ge 2n≥2 のとき、an=a1+∑k=1n−1(2k2+k−12)a_n = a_1 + \sum_{k=1}^{n-1} (2k^2 + k - \frac{1}{2})an=a1+∑k=1n−1(2k2+k−21)a1=3a_1 = 3a1=3 なので、an=3+∑k=1n−1(2k2+k−12)a_n = 3 + \sum_{k=1}^{n-1} (2k^2 + k - \frac{1}{2})an=3+∑k=1n−1(2k2+k−21)=3+2∑k=1n−1k2+∑k=1n−1k−12∑k=1n−11= 3 + 2 \sum_{k=1}^{n-1} k^2 + \sum_{k=1}^{n-1} k - \frac{1}{2} \sum_{k=1}^{n-1} 1=3+2∑k=1n−1k2+∑k=1n−1k−21∑k=1n−11=3+2⋅(n−1)n(2n−1)6+(n−1)n2−12(n−1)= 3 + 2 \cdot \frac{(n-1)n(2n-1)}{6} + \frac{(n-1)n}{2} - \frac{1}{2} (n-1)=3+2⋅6(n−1)n(2n−1)+2(n−1)n−21(n−1)=3+(n−1)n(2n−1)3+(n−1)n2−12(n−1)= 3 + \frac{(n-1)n(2n-1)}{3} + \frac{(n-1)n}{2} - \frac{1}{2} (n-1)=3+3(n−1)n(2n−1)+2(n−1)n−21(n−1)=3+(n−1)6[2n(2n−1)+3n−3]= 3 + \frac{(n-1)}{6} [2n(2n-1) + 3n - 3]=3+6(n−1)[2n(2n−1)+3n−3]=3+(n−1)6[4n2−2n+3n−3]= 3 + \frac{(n-1)}{6} [4n^2 - 2n + 3n - 3]=3+6(n−1)[4n2−2n+3n−3]=3+(n−1)6[4n2+n−3]= 3 + \frac{(n-1)}{6} [4n^2 + n - 3]=3+6(n−1)[4n2+n−3]=3+(n−1)(4n−3)(n+1)6= 3 + \frac{(n-1)(4n - 3)(n+1)}{6}=3+6(n−1)(4n−3)(n+1)=3+(4n2+n−3)(n−1)6=3+4n3−4n2+n2−n−3n+36= 3 + \frac{(4n^2+n-3)(n-1)}{6} = 3 + \frac{4n^3 - 4n^2 + n^2 - n - 3n + 3}{6}=3+6(4n2+n−3)(n−1)=3+64n3−4n2+n2−n−3n+3=3+4n3−3n2−4n+36=18+4n3−3n2−4n+36= 3 + \frac{4n^3 - 3n^2 - 4n + 3}{6} = \frac{18 + 4n^3 - 3n^2 - 4n + 3}{6}=3+64n3−3n2−4n+3=618+4n3−3n2−4n+3=4n3−3n2−4n+216 = \frac{4n^3 - 3n^2 - 4n + 21}{6}=64n3−3n2−4n+21n=1n=1n=1 のとき、4−3−4+216=186=3=a1\frac{4-3-4+21}{6} = \frac{18}{6} = 3 = a_164−3−4+21=618=3=a1 なので、この式は n=1n=1n=1 でも成り立つ。##3. 最終的な答え(1) an=52−12na_n = \frac{5}{2} - \frac{1}{2}nan=25−21n(2) an=(−1)na_n = (-1)^nan=(−1)n(3) an=4n3−3n2−4n+216a_n = \frac{4n^3 - 3n^2 - 4n + 21}{6}an=64n3−3n2−4n+21