与えられた直角三角形において、一つの角度が $60^\circ$ で、底辺の長さが $2$ であるとき、高さ $x$ を求める問題です。

幾何学直角三角形三角比タンジェント角度高さ辺の長さ
2025/4/8

1. 問題の内容

与えられた直角三角形において、一つの角度が 6060^\circ で、底辺の長さが 22 であるとき、高さ xx を求める問題です。

2. 解き方の手順

この問題は三角比を使って解くことができます。
直角三角形において、角度 6060^\circ に対する正接(タンジェント)は、対辺(高さ xx)と隣辺(底辺 22)の比で表されます。
したがって、
tan(60)=x2 \tan(60^\circ) = \frac{x}{2}
tan(60)\tan(60^\circ) の値は 3\sqrt{3} であるため、
3=x2 \sqrt{3} = \frac{x}{2}
両辺に 22 を掛けて、xx について解きます。
x=23 x = 2\sqrt{3}

3. 最終的な答え

x=23x = 2\sqrt{3}

「幾何学」の関連問題

円の方程式 $x^2 + y^2 - 2y = 0$ を極方程式で表す問題です。

極座標方程式三角関数
2025/6/21

大きい正方形と小さい正方形を組み合わせた図形において、大きい正方形の一辺が55cm、小さい正方形の一辺が15cmであるとき、黒色に塗られている部分の面積を求める。

正方形面積図形
2025/6/21

右図のように、大きい正方形と小さい正方形が組み合わさっている。大きい正方形の一辺の長さは $55cm$ であり、小さい正方形の一辺の長さは $15cm$ である。黒色で塗られている部分の面積を求めよ。

正方形面積図形
2025/6/21

大きい正方形と小さい正方形が組み合わさった図形において、大きい正方形の一辺が $55cm$、小さい正方形の一辺が $15cm$のとき、黒色に塗られている部分の面積を求める。

正方形面積図形
2025/6/21

地表から1m離して作った世界一周道路と赤道の長さの差を求める問題です。地球の赤道の半径は約6378kmであるという情報が与えられています。さらに、この世界一周道路と赤道の長さの差は、選択肢のどれと近い...

円周半径
2025/6/21

三角形OABにおいて、$|OA|=3$, $|OB|=2$, $\angle AOB = 60^\circ$である。 三角形OABの垂心をHとし、直線OHと線分ABの交点をPとする。 (1) $\ve...

ベクトル内積三角形垂心線分の比
2025/6/21

問題は、$2 - \sqrt{3} = \tan(\theta)$を満たす$\theta$を求める問題です。ただし、単位は度数法とします。

三角関数tan角度加法定理
2025/6/21

与えられた点A, B, C, Dがそれぞれどの象限にあるかを答える問題です。点の座標は以下の通りです。 A(-3, 1) B(4, 3) C(1, -2) D(-2, -4)

座標平面象限座標
2025/6/21

直角三角形ABCにおいて、BC=4, CA=3, ∠ACB=90° とする。辺AB上にAD=xとなる点Dをとる。点DからBC, ACへ、それぞれ垂線DE, DFを引く。 (1) 長方形DECFの面積S...

直角三角形面積最大値相似二次関数
2025/6/21

半径 $r$ の円 $x^2 + y^2 = r^2$ と直線 $x + y - 6 = 0$ が接するとき、$r$ の値を求める問題です。

直線接する点と直線の距離
2025/6/21