複素数 $z$ に対して、方程式 $|z-1-i|^2 = 2|z+1+i|^2$ を満たす $z$ が表す図形を求める問題です。

幾何学複素数平面円の方程式絶対値複素数
2025/3/6

1. 問題の内容

複素数 zz に対して、方程式 z1i2=2z+1+i2|z-1-i|^2 = 2|z+1+i|^2 を満たす zz が表す図形を求める問題です。

2. 解き方の手順

z=x+yiz = x + yi (xx, yy は実数) とおきます。
z1i2=(x1)+(y1)i2=(x1)2+(y1)2|z-1-i|^2 = |(x-1) + (y-1)i|^2 = (x-1)^2 + (y-1)^2
z+1+i2=(x+1)+(y+1)i2=(x+1)2+(y+1)2|z+1+i|^2 = |(x+1) + (y+1)i|^2 = (x+1)^2 + (y+1)^2
与えられた方程式に代入すると、
(x1)2+(y1)2=2((x+1)2+(y+1)2)(x-1)^2 + (y-1)^2 = 2((x+1)^2 + (y+1)^2)
x22x+1+y22y+1=2(x2+2x+1+y2+2y+1)x^2 - 2x + 1 + y^2 - 2y + 1 = 2(x^2 + 2x + 1 + y^2 + 2y + 1)
x22x+y22y+2=2x2+4x+2y2+4y+4x^2 - 2x + y^2 - 2y + 2 = 2x^2 + 4x + 2y^2 + 4y + 4
0=x2+6x+y2+6y+20 = x^2 + 6x + y^2 + 6y + 2
平方完成を行うと、
(x2+6x+9)+(y2+6y+9)=2+9+9(x^2 + 6x + 9) + (y^2 + 6y + 9) = -2 + 9 + 9
(x+3)2+(y+3)2=16=42(x+3)^2 + (y+3)^2 = 16 = 4^2
これは、中心が 33i-3-3i で半径が 44 の円を表します。

3. 最終的な答え

(x+3)2+(y+3)2=16(x+3)^2 + (y+3)^2 = 16
もしくは、中心 33i-3-3i, 半径 44 の円
z+3+3i=4|z+3+3i|=4

「幾何学」の関連問題

正 $n$ 角形に関する以下の2つの問題を解きます。 (1) 対角線の本数が20本であるとき、$n$ の値を求めます。 (2) 正 $n$ 角形の4つの頂点を結んで四角形を作るとき、正 $n$ 角形と...

多角形対角線組み合わせ方程式
2025/7/27

放物線 $y=x^2$ 上に2点A, Bがあり、それぞれのx座標は-2, 3である。直線ABとy軸との交点をCとし、傾きが2で点Bを通る直線とy軸との交点をDとする。このとき、以下の問いに答えよ。 (...

放物線直線座標平面面積三角形二次関数図形周の長さ
2025/7/27

円 $x^2 + y^2 + 3ax - 2a^2y + a^4 + 2a^2 - 1 = 0$ がある。$a$ の値が変化するとき、円の中心の軌跡を求めよ。

軌跡座標平面平方完成
2025/7/27

$n$ ($n \ge 5$) 角形に関する以下の2つの問題を解く: (1) 対角線の本数が20本であるとき、$n$の値を求める。 (2) 正$n$角形の4つの頂点を結んで四角形を作るとき、正$n$角...

多角形対角線組み合わせ図形
2025/7/27

与えられた条件を満たす点Pの軌跡を求める問題です。 (1) 点A(0, 0)からの距離と点B(3, 0)からの距離の比が1:2である点Pの軌跡を求めます。 (2) 点A(-2, 0)からの距離と点B(...

軌跡距離
2025/7/27

点Pの軌跡を求める問題です。 (1) 点A(0,0)からの距離と点B(3,0)からの距離の比が1:2である点Pの軌跡を求めます。 (2) 点A(-2,0)からの距離と点B(1,0)からの距離の比が2:...

軌跡距離座標
2025/7/27

与えられた図において、$AB=2$, $DC=1$, $\angle B=\theta$, $\angle ADC=45^\circ$, $\angle C=90^\circ$である。 (1) 辺AC...

幾何三角比余弦定理直角三角形
2025/7/27

図において、$\triangle ABC \equiv \triangle DEC$ であり、$ED // BC$ であるとき、$\angle ACE$ の大きさを求める問題です。

合同平行線角度三角形
2025/7/27

正六角錐 O-ABCDEF において、正六角形 ABCDEF の一辺の長さが 6cm で、他の辺の長さもすべて 6cm である。正六角形 ABCDEF の3本の対角線 AD, BE, CF は1点で交...

正六角錐三平方の定理体積正六角形
2025/7/27

与えられた3つの直角三角形において、角度Aに対するサイン(sin A)、コサイン(cos A)、タンジェント(tan A)の値をそれぞれ求める問題です。

三角比直角三角形sincostan三平方の定理
2025/7/27