袋の中に番号2の玉が4個、番号3の玉が2個、番号4の玉が3個、番号5の玉が1個入っている。この袋から玉を1個取り出すとき、出る番号を確率変数 $X$ とするとき、$X$ の確率分布を求める。

確率論・統計学確率分布確率変数期待値
2025/4/9

1. 問題の内容

袋の中に番号2の玉が4個、番号3の玉が2個、番号4の玉が3個、番号5の玉が1個入っている。この袋から玉を1個取り出すとき、出る番号を確率変数 XX とするとき、XX の確率分布を求める。

2. 解き方の手順

まず、袋の中に入っている玉の総数を計算します。
4+2+3+1=104 + 2 + 3 + 1 = 10
したがって、玉の総数は10個です。
次に、XX が各値をとる確率を計算します。
* X=2X = 2 となる確率: 番号2の玉は4個あるので、P(X=2)=410=25P(X=2) = \frac{4}{10} = \frac{2}{5}
* X=3X = 3 となる確率: 番号3の玉は2個あるので、P(X=3)=210=15P(X=3) = \frac{2}{10} = \frac{1}{5}
* X=4X = 4 となる確率: 番号4の玉は3個あるので、P(X=4)=310P(X=4) = \frac{3}{10}
* X=5X = 5 となる確率: 番号5の玉は1個あるので、P(X=5)=110P(X=5) = \frac{1}{10}
Xの値を小さい順に並べると、2, 3, 4, 5となるので、それぞれの確率を対応する場所に記入する。

3. 最終的な答え

XX | 2 | 3 | 4 | 5 | 計
---|---|---|---|---|---
PP | 2/5 | 1/5 | 3/10 | 1/10 | 1
もしくは小数で
XX | 2 | 3 | 4 | 5 | 計
---|---|---|---|---|---
PP | 0.4 | 0.2 | 0.3 | 0.1 | 1

「確率論・統計学」の関連問題

(1) 母平均 $\mu = 80$, 母標準偏差 $\sigma = 12$ の母集団から, 大きさ $n = 400$ の無作為標本を抽出したとき, 標本平均 $\overline{X}$ が $...

確率標本平均標本比率中心極限定理正規分布統計的推測
2025/4/10

## 1. 問題の内容

期待値分散標準偏差確率変数独立性
2025/4/10

3つのサイコロを同時に投げたとき、以下の確率を求めます。 (1) 目の和が5となる確率 (2) 少なくとも1つは素数の目が出る確率 (3) 目の積が5の倍数となる確率

確率サイコロ確率計算余事象
2025/4/10

赤玉4個、白玉2個、合計6個の玉が入った袋から、同時に3個取り出すとき、取り出した玉が異なる2色である確率を求める問題です。

確率組み合わせ事象
2025/4/10

問題30は、(1) "baseball"という単語の8文字を並び替えてできる文字列の総数を求める問題と、(2) 赤玉、青玉、白玉がそれぞれ5個ずつ入った袋から5個の玉を取り出す場合の組合せに関する問題...

順列組合せ重複組合せ場合の数
2025/4/10

サイコロを60回振るとき、1の目が出る回数Xの分散を求める問題です。

確率二項分布分散サイコロ
2025/4/10

大小2つのサイコロを投げ、大きいサイコロの目を$a$、小さいサイコロの目を$b$とする。点Pの座標を$(a,b)$とし、原点Oと点Pを通る直線OPを引く。 (1) 点P$(a,b)$の取り方は全部で何...

確率サイコロ座標直線の方程式
2025/4/10

正五角形ABCDEの頂点Aに石Sがあり、サイコロを振って出た目の数だけA→B→C→D→E→A→…と石を動かす。 (1) サイコロを1回投げたとき、石Sが頂点Dにくる確率と頂点Bにくる確率を求める。 (...

確率サイコロ期待値場合の数
2025/4/10

大小2つのサイコロを同時に1回投げ、大きいサイコロの目が小さいサイコロの目よりも大きい場合に、大きいサイコロの目を点数とする。それ以外の場合は0点とする。この時、以下の確率を求める。 (1) 得点が5...

確率サイコロ期待値
2025/4/10

大小2つのサイコロを同時に投げるとき、以下の確率を求めます。 (1) 出た目の数の和が7になる確率 (2) 出た目の数の和が4以下になる確率 (3) 少なくとも1つは1の目が出る確率 (4) 出る目の...

確率サイコロ場合の数確率計算
2025/4/10