与えられた4つの式を展開する問題です。 (1) $(2x-1)(4x^2+3)$ (2) $(2x^2+x-3)(x-2)$ (3) $(x+3)(x^2-2x+1)$ (4) $(2x+y)(3x^2+xy-2y^2)$代数学多項式の展開因数分解整式2025/4/101. 問題の内容与えられた4つの式を展開する問題です。(1) (2x−1)(4x2+3)(2x-1)(4x^2+3)(2x−1)(4x2+3)(2) (2x2+x−3)(x−2)(2x^2+x-3)(x-2)(2x2+x−3)(x−2)(3) (x+3)(x2−2x+1)(x+3)(x^2-2x+1)(x+3)(x2−2x+1)(4) (2x+y)(3x2+xy−2y2)(2x+y)(3x^2+xy-2y^2)(2x+y)(3x2+xy−2y2)2. 解き方の手順各々の式を展開していきます。(1) (2x−1)(4x2+3)(2x-1)(4x^2+3)(2x−1)(4x2+3)=2x(4x2+3)−1(4x2+3)= 2x(4x^2+3) - 1(4x^2+3)=2x(4x2+3)−1(4x2+3)=8x3+6x−4x2−3= 8x^3 + 6x - 4x^2 - 3=8x3+6x−4x2−3=8x3−4x2+6x−3= 8x^3 - 4x^2 + 6x - 3=8x3−4x2+6x−3(2) (2x2+x−3)(x−2)(2x^2+x-3)(x-2)(2x2+x−3)(x−2)=2x2(x−2)+x(x−2)−3(x−2)= 2x^2(x-2) + x(x-2) - 3(x-2)=2x2(x−2)+x(x−2)−3(x−2)=2x3−4x2+x2−2x−3x+6= 2x^3 - 4x^2 + x^2 - 2x - 3x + 6=2x3−4x2+x2−2x−3x+6=2x3−3x2−5x+6= 2x^3 - 3x^2 - 5x + 6=2x3−3x2−5x+6(3) (x+3)(x2−2x+1)(x+3)(x^2-2x+1)(x+3)(x2−2x+1)=x(x2−2x+1)+3(x2−2x+1)= x(x^2-2x+1) + 3(x^2-2x+1)=x(x2−2x+1)+3(x2−2x+1)=x3−2x2+x+3x2−6x+3= x^3 - 2x^2 + x + 3x^2 - 6x + 3=x3−2x2+x+3x2−6x+3=x3+x2−5x+3= x^3 + x^2 - 5x + 3=x3+x2−5x+3(4) (2x+y)(3x2+xy−2y2)(2x+y)(3x^2+xy-2y^2)(2x+y)(3x2+xy−2y2)=2x(3x2+xy−2y2)+y(3x2+xy−2y2)= 2x(3x^2+xy-2y^2) + y(3x^2+xy-2y^2)=2x(3x2+xy−2y2)+y(3x2+xy−2y2)=6x3+2x2y−4xy2+3x2y+xy2−2y3= 6x^3 + 2x^2y - 4xy^2 + 3x^2y + xy^2 - 2y^3=6x3+2x2y−4xy2+3x2y+xy2−2y3=6x3+5x2y−3xy2−2y3= 6x^3 + 5x^2y - 3xy^2 - 2y^3=6x3+5x2y−3xy2−2y33. 最終的な答え(1) 8x3−4x2+6x−38x^3 - 4x^2 + 6x - 38x3−4x2+6x−3(2) 2x3−3x2−5x+62x^3 - 3x^2 - 5x + 62x3−3x2−5x+6(3) x3+x2−5x+3x^3 + x^2 - 5x + 3x3+x2−5x+3(4) 6x3+5x2y−3xy2−2y36x^3 + 5x^2y - 3xy^2 - 2y^36x3+5x2y−3xy2−2y3