与えられた式 $x^2 - 81 = (x + ケ)(x - コ)$ において、ケとコに入る数字を求める問題です。

代数学因数分解二次方程式式の展開平方根
2025/4/14

1. 問題の内容

与えられた式 x281=(x+)(x)x^2 - 81 = (x + ケ)(x - コ) において、ケとコに入る数字を求める問題です。

2. 解き方の手順

x281x^2 - 81 を因数分解します。
81=9281 = 9^2 であることに注目すると、x281x^2 - 81a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b) の公式を利用して因数分解できます。
よって、
x281=x292=(x+9)(x9)x^2 - 81 = x^2 - 9^2 = (x + 9)(x - 9)
となります。
したがって、x281=(x+9)(x9)x^2 - 81 = (x + 9)(x - 9)(x+)(x)(x + ケ)(x - コ) を比較すると、
ケ = 9
コ = 9
となります。

3. 最終的な答え

ケ = 9
コ = 9

「代数学」の関連問題

次の式を計算します。 $\frac{x^2 - 2x + 1}{x^2 - 2x} \times \frac{x-2}{x^2 + 3x + 2} \div \frac{x-1}{x^2 + x}$

式の計算因数分解分数式
2025/4/19

与えられた等比数列 $2, \frac{2}{3}, \frac{2}{3^2}, \frac{2}{3^3}, \dots$ の初項から第 $n$ 項までの和 $S_n$ を求めます。

等比数列数列の和級数
2025/4/19

$x = \frac{3-\sqrt{5}}{2}$ のとき、次の式の値を求めよ。 (1) $x + \frac{1}{x}$ (2) $x^2 + \frac{1}{x^2}$ (3) $x^2 -...

式の計算有理化代入分数式
2025/4/19

与えられた式 $-3x(x^2 + 8x - 5)$ を展開して整理しなさい。

展開多項式整理
2025/4/19

与えられた式 $2 - 3x(x^2 + 8x - 5)$ を展開し、整理せよ。

式の展開多項式整理
2025/4/19

与えられた式 $2x(x - 6)$ を展開し、整理せよ。

展開多項式分配法則
2025/4/19

与えられた式は、$x^2 + 4$ です。 この式を因数分解せよという問題だと推測されます。

因数分解複素数二次式虚数
2025/4/19

行列 $X = \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_...

線形代数行列逆行列連立方程式
2025/4/19

$y$ は $x$ に反比例し、$x=2$ のとき $y = -6$ です。$y$ を $x$ の式で表しなさい。

反比例比例定数分数式
2025/4/19

与えられた数式 $16x^2y \div (-8xy^2) \times 2xy$ を計算し、簡略化せよ。

式の計算文字式単項式割り算掛け算簡略化
2025/4/19