$x^6 - y^6$ を因数分解する問題です。代数学因数分解式の展開多項式2025/4/101. 問題の内容x6−y6x^6 - y^6x6−y6 を因数分解する問題です。2. 解き方の手順まず、x6−y6x^6 - y^6x6−y6 を (x3)2−(y3)2(x^3)^2 - (y^3)^2(x3)2−(y3)2 と見て、2乗の差の公式 a2−b2=(a+b)(a−b)a^2 - b^2 = (a + b)(a - b)a2−b2=(a+b)(a−b) を利用して因数分解します。x6−y6=(x3)2−(y3)2=(x3+y3)(x3−y3)x^6 - y^6 = (x^3)^2 - (y^3)^2 = (x^3 + y^3)(x^3 - y^3)x6−y6=(x3)2−(y3)2=(x3+y3)(x3−y3)次に、x3+y3x^3 + y^3x3+y3 と x3−y3x^3 - y^3x3−y3 をそれぞれ因数分解します。和の3乗と差の3乗の公式を利用します。a3+b3=(a+b)(a2−ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)a3+b3=(a+b)(a2−ab+b2)a3−b3=(a−b)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)a3−b3=(a−b)(a2+ab+b2)したがって、x3+y3=(x+y)(x2−xy+y2)x^3 + y^3 = (x + y)(x^2 - xy + y^2)x3+y3=(x+y)(x2−xy+y2)x3−y3=(x−y)(x2+xy+y2)x^3 - y^3 = (x - y)(x^2 + xy + y^2)x3−y3=(x−y)(x2+xy+y2)よって、x6−y6x^6 - y^6x6−y6 は次のように因数分解できます。x6−y6=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)x^6 - y^6 = (x + y)(x^2 - xy + y^2)(x - y)(x^2 + xy + y^2)x6−y6=(x+y)(x2−xy+y2)(x−y)(x2+xy+y2)並び替えて、x6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)x^6 - y^6 = (x + y)(x - y)(x^2 - xy + y^2)(x^2 + xy + y^2)x6−y6=(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)さらに、(x+y)(x−y)=x2−y2(x+y)(x-y) = x^2 - y^2(x+y)(x−y)=x2−y2であるので、x6−y6=(x2−y2)(x2−xy+y2)(x2+xy+y2)x^6 - y^6 = (x^2 - y^2)(x^2 - xy + y^2)(x^2 + xy + y^2)x6−y6=(x2−y2)(x2−xy+y2)(x2+xy+y2)と表すことも可能です。3. 最終的な答え(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)(x + y)(x - y)(x^2 - xy + y^2)(x^2 + xy + y^2)(x+y)(x−y)(x2−xy+y2)(x2+xy+y2)または(x2−y2)(x2−xy+y2)(x2+xy+y2)(x^2 - y^2)(x^2 - xy + y^2)(x^2 + xy + y^2)(x2−y2)(x2−xy+y2)(x2+xy+y2)