与えられた連立方程式を解く問題です。 連立方程式は次の通りです。 $2x + y = 5$ $x - y = 1$

代数学連立方程式加減法一次方程式
2025/4/12

1. 問題の内容

与えられた連立方程式を解く問題です。
連立方程式は次の通りです。
2x+y=52x + y = 5
xy=1x - y = 1

2. 解き方の手順

加減法を用いて連立方程式を解きます。
まず、2つの式を足し合わせることで、yy を消去します。
(2x+y)+(xy)=5+1(2x + y) + (x - y) = 5 + 1
3x=63x = 6
xx について解きます。
x=63x = \frac{6}{3}
x=2x = 2
次に、xx の値をどちらかの式に代入して yy を求めます。ここでは、xy=1x - y = 1 に代入します。
2y=12 - y = 1
y=12-y = 1 - 2
y=1-y = -1
y=1y = 1

3. 最終的な答え

x=2x = 2
y=1y = 1

「代数学」の関連問題

みかんが240個あり、4個入りの袋を $x$ 袋、6個入りの袋を $y$ 袋作った。6個入りの袋の数 $y$ は、4個入りの袋の数 $x$ の3倍より4袋少ない。このとき、$x$ と $y$ の関係式...

一次式方程式文章問題
2025/4/19

$(2x + 1)^7$ を二項定理を用いて展開します。

二項定理多項式の展開組み合わせ
2025/4/19

与えられた2つの2次関数 $f(x) = x^2 - 2x + 1$ と $g(x) = -x^2 + 2ax - 6a + 13$ があります。 (1) $0 \leq x \leq 3$ における...

二次関数最大値最小値不等式
2025/4/19

与えられた式 $\frac{2 \log 2}{2 \log 3}$ を簡略化して値を求める問題です。

対数底の変換公式計算
2025/4/19

問題は、$a(b - cx) = d(x - e)$ という方程式を $x$ について解くことです。

方程式一次方程式文字式の計算解の公式
2025/4/19

次の等式を満たす定数 $a$ と $b$ を求める問題です。 $\frac{x-1}{(x+2)(x+1)} = \frac{a}{x+2} + \frac{b}{x+1}$

部分分数分解連立方程式分数式
2025/4/19

与えられた式 $3x + y = xy + 1$ を $y$ について解きます。つまり、$y = f(x)$ の形に変形します。

方程式式の変形分数式
2025/4/19

与えられた数式 $\frac{\log_3 4}{\log_3 9}$ を簡単にせよ。

対数底の変換公式対数の性質
2025/4/19

問題は $(2x+1)^7$ を展開することです。

二項定理展開多項式
2025/4/19

与えられた式 $3^{log_9 4}$ を簡単にせよ。

対数指数底の変換公式指数法則
2025/4/19