与えられた25個の式をそれぞれ因数分解する問題です。

代数学因数分解二乗の差三乗の和三乗の差共通因数完全平方式
2025/4/12
以下に、与えられた問題の因数分解の解法を示します。

1. 問題の内容

与えられた25個の式をそれぞれ因数分解する問題です。

2. 解き方の手順

それぞれの式に対して、適切な因数分解の手法を適用します。
以下に、各問題の解答と解き方の簡単な説明を示します。
(1) x2y2=(x+y)(xy)x^2 - y^2 = (x+y)(x-y) (二乗の差)
(2) x28x+16=(x4)2x^2 - 8x + 16 = (x-4)^2 (完全平方式)
(3) x3+y3=(x+y)(x2xy+y2)x^3 + y^3 = (x+y)(x^2 - xy + y^2) (三乗の和)
(4) x3y3=(xy)(x2+xy+y2)x^3 - y^3 = (x-y)(x^2 + xy + y^2) (三乗の差)
(5) a(x+y)b(x+y)=(x+y)(ab)a(x+y) - b(x+y) = (x+y)(a-b) (共通因数でくくる)
(6) x2x2=(x2)(x+1)x^2 - x - 2 = (x-2)(x+1) (二次式の因数分解)
(7) x327=x333=(x3)(x2+3x+9)x^3 - 27 = x^3 - 3^3 = (x-3)(x^2 + 3x + 9) (三乗の差)
(8) 2x25xy+2y2=(2xy)(x2y)2x^2 - 5xy + 2y^2 = (2x-y)(x-2y) (二次式の因数分解)
(9) x416=(x24)(x2+4)=(x2)(x+2)(x2+4)x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x-2)(x+2)(x^2 + 4) (二乗の差)
(10) x664=(x3)282=(x38)(x3+8)=(x2)(x2+2x+4)(x+2)(x22x+4)x^6 - 64 = (x^3)^2 - 8^2 = (x^3 - 8)(x^3 + 8) = (x-2)(x^2 + 2x + 4)(x+2)(x^2 - 2x + 4) (二乗の差と三乗の和/差)
(11) x2xyx+y=x(xy)(xy)=(xy)(x1)x^2 - xy - x + y = x(x-y) - (x-y) = (x-y)(x-1) (共通因数でくくる)
(12) ab+a2=a(b+a)=a(a+b)ab + a^2 = a(b+a) = a(a+b) (共通因数でくくる)
(13) a3+8b3=a3+(2b)3=(a+2b)(a22ab+4b2)a^3 + 8b^3 = a^3 + (2b)^3 = (a+2b)(a^2 - 2ab + 4b^2) (三乗の和)
(14) 27a38b3=(3a)3(2b)3=(3a2b)(9a2+6ab+4b2)27a^3 - 8b^3 = (3a)^3 - (2b)^3 = (3a-2b)(9a^2 + 6ab + 4b^2) (三乗の差)
(15) a2b2+a+b=(ab)(a+b)+(a+b)=(a+b)(ab+1)a^2 - b^2 + a + b = (a-b)(a+b) + (a+b) = (a+b)(a-b+1) (二乗の差と共通因数でくくる)
(16) x3y3+xy=(xy)(x2+xy+y2)+(xy)=(xy)(x2+xy+y2+1)x^3 - y^3 + x - y = (x-y)(x^2 + xy + y^2) + (x-y) = (x-y)(x^2 + xy + y^2 + 1) (三乗の差と共通因数でくくる)
(17) x4y4+x2y2=(x2y2)(x2+y2)+(x2y2)=(x2y2)(x2+y2+1)=(xy)(x+y)(x2+y2+1)x^4 - y^4 + x^2 - y^2 = (x^2 - y^2)(x^2 + y^2) + (x^2 - y^2) = (x^2 - y^2)(x^2 + y^2 + 1) = (x-y)(x+y)(x^2 + y^2 + 1) (二乗の差と共通因数でくくる)
(18) 81p416q4=(9p24q2)(9p2+4q2)=(3p2q)(3p+2q)(9p2+4q2)81p^4 - 16q^4 = (9p^2 - 4q^2)(9p^2 + 4q^2) = (3p - 2q)(3p + 2q)(9p^2 + 4q^2) (二乗の差)
(19) x42x2+1=(x21)2=(x1)2(x+1)2x^4 - 2x^2 + 1 = (x^2 - 1)^2 = (x-1)^2(x+1)^2 (完全平方式と二乗の差)
(20) x62x3+1=(x31)2=((x1)(x2+x+1))2=(x1)2(x2+x+1)2x^6 - 2x^3 + 1 = (x^3 - 1)^2 = ((x-1)(x^2 + x + 1))^2 = (x-1)^2(x^2+x+1)^2
(21) a2+ab+ac+bc=a(a+b)+c(a+b)=(a+b)(a+c)a^2 + ab + ac + bc = a(a+b) + c(a+b) = (a+b)(a+c) (共通因数でくくる)
(22) z4+4=(z4+4z2+4)4z2=(z2+2)2(2z)2=(z2+2z+2)(z22z+2)z^4 + 4 = (z^4 + 4z^2 + 4) - 4z^2 = (z^2 + 2)^2 - (2z)^2 = (z^2 + 2z + 2)(z^2 - 2z + 2)
(23) x4+64=(x4+16x2+64)16x2=(x2+8)2(4x)2=(x2+4x+8)(x24x+8)x^4 + 64 = (x^4 + 16x^2 + 64) - 16x^2 = (x^2+8)^2 - (4x)^2 = (x^2 + 4x + 8)(x^2 - 4x + 8)
(24) 9k236y2=9(k24y2)=9(k2y)(k+2y)9k^2 - 36y^2 = 9(k^2 - 4y^2) = 9(k-2y)(k+2y) (共通因数と二乗の差)
(25) 216a3+343b3=(6a)3+(7b)3=(6a+7b)(36a242ab+49b2)216a^3 + 343b^3 = (6a)^3 + (7b)^3 = (6a+7b)(36a^2 - 42ab + 49b^2) (三乗の和)

3. 最終的な答え

(1) (x+y)(xy)(x+y)(x-y)
(2) (x4)2(x-4)^2
(3) (x+y)(x2xy+y2)(x+y)(x^2 - xy + y^2)
(4) (xy)(x2+xy+y2)(x-y)(x^2 + xy + y^2)
(5) (x+y)(ab)(x+y)(a-b)
(6) (x2)(x+1)(x-2)(x+1)
(7) (x3)(x2+3x+9)(x-3)(x^2 + 3x + 9)
(8) (2xy)(x2y)(2x-y)(x-2y)
(9) (x2)(x+2)(x2+4)(x-2)(x+2)(x^2 + 4)
(10) (x2)(x2+2x+4)(x+2)(x22x+4)(x-2)(x^2 + 2x + 4)(x+2)(x^2 - 2x + 4)
(11) (xy)(x1)(x-y)(x-1)
(12) a(a+b)a(a+b)
(13) (a+2b)(a22ab+4b2)(a+2b)(a^2 - 2ab + 4b^2)
(14) (3a2b)(9a2+6ab+4b2)(3a-2b)(9a^2 + 6ab + 4b^2)
(15) (a+b)(ab+1)(a+b)(a-b+1)
(16) (xy)(x2+xy+y2+1)(x-y)(x^2 + xy + y^2 + 1)
(17) (xy)(x+y)(x2+y2+1)(x-y)(x+y)(x^2 + y^2 + 1)
(18) (3p2q)(3p+2q)(9p2+4q2)(3p - 2q)(3p + 2q)(9p^2 + 4q^2)
(19) (x1)2(x+1)2(x-1)^2(x+1)^2
(20) (x1)2(x2+x+1)2(x-1)^2(x^2+x+1)^2
(21) (a+b)(a+c)(a+b)(a+c)
(22) (z2+2z+2)(z22z+2)(z^2 + 2z + 2)(z^2 - 2z + 2)
(23) (x2+4x+8)(x24x+8)(x^2 + 4x + 8)(x^2 - 4x + 8)
(24) 9(k2y)(k+2y)9(k-2y)(k+2y)
(25) (6a+7b)(36a242ab+49b2)(6a+7b)(36a^2 - 42ab + 49b^2)