円と2本の直線が図のように交わっているとき、$x$ の値を求めます。円の内部の交点から円周上の点までの線分の長さが与えられています。具体的には、交点から円周上の点までの長さがそれぞれ 2, 3, 4, $x$ です。

幾何学方べきの定理幾何線分の長さ
2025/4/13

1. 問題の内容

円と2本の直線が図のように交わっているとき、xx の値を求めます。円の内部の交点から円周上の点までの線分の長さが与えられています。具体的には、交点から円周上の点までの長さがそれぞれ 2, 3, 4, xx です。

2. 解き方の手順

円の内部の1点を通る2つの直線が円と交わるとき、交点によってできる線分の長さの積は一定であるという性質(方べきの定理)を利用します。この問題では、交点から円周上の点までの線分の長さの積が等しくなります。したがって、
2×(x)=3×42 \times (x) = 3 \times 4
という関係が成り立ちます。
この式を解いて xx を求めます。
2x=122x = 12
x=122x = \frac{12}{2}
x=6x = 6

3. 最終的な答え

x=6x=6

「幾何学」の関連問題

3点A(2, 1, -1), B(2, 2, -3), C(1, 2, -2)が与えられています。 (1) ベクトル$\overrightarrow{AB}$と$\overrightarrow{AC}...

ベクトル空間ベクトル内積外積三角形の面積四面体の体積平面の方程式
2025/5/31

$\theta$ が鋭角で、$\tan \theta = \sqrt{2}$ のとき、$\sin \theta = \frac{オ}{カ}$、$\cos \theta = \frac{キ}{\sqrt...

三角比tansincos鋭角
2025/5/31

$\theta$ が鋭角で、$\cos \theta = \frac{2}{3}$ のとき、$\sin \theta$ と $\tan \theta$ の値を求める問題です。$\sin \theta$...

三角比三角関数sincostan
2025/5/31

正六角形ABCDEFについて、以下の数を求めます。 (1) 3個の頂点を結んでできる三角形の個数 (2) 2個の頂点を結ぶ線分の本数 (3) 対角線の本数

組み合わせ正六角形三角形線分対角線図形
2025/5/31

座標空間内の3点A(2, -2, 1), B(-4, 1, 1), C(1, 5, -1)と原点Oがある。 (1) |OA|, |OB|, OA・OB を求め、OAとOBのなす角を求める。 (2) △...

ベクトル空間図形内積面積体積三角比
2025/5/31

地面に垂直に立つ木 PQ と、地面の点 A, B がある。$\angle PAQ = 30^\circ$, $\angle QAB = 45^\circ$, $\angle QBA = 60^\cir...

三角比正弦定理高さ三角関数
2025/5/31

三角形ABCにおいて、$a=3$, $b=5$, $c=7$である。 角Cの角度と、内接円の半径を求める。

三角形余弦定理内接円角度面積
2025/5/31

三角形ABCにおいて、$a=2$, $c=1+\sqrt{3}$, $B=30^\circ$のとき、残りの辺の長さ$b$と角の大きさ$A$, $C$を求めよ。

三角形余弦定理正弦定理角度辺の長さ
2025/5/31

三角形ABCにおいて、$a=5, b=\sqrt{7}, c=2\sqrt{3}$ のとき、角Bの大きさを求める問題です。

三角形余弦定理角度
2025/5/31

三角形ABCにおいて、$b=3$, $c=2$, $A=60^\circ$のとき、$a=\sqrt{\boxed{エ}}$を求めよ。

三角形余弦定理辺の長さ角度
2025/5/31