関数 $f(\theta) = \cos^2\theta + 8\sin\theta\cos\theta - 5\sin^2\theta$ を合成せよ。解析学三角関数合成三角関数の合成2025/4/141. 問題の内容関数 f(θ)=cos2θ+8sinθcosθ−5sin2θf(\theta) = \cos^2\theta + 8\sin\theta\cos\theta - 5\sin^2\thetaf(θ)=cos2θ+8sinθcosθ−5sin2θ を合成せよ。2. 解き方の手順まず、f(θ)f(\theta)f(θ)を三角関数の2倍角の公式を用いて変形する。cos2θ=1+cos(2θ)2\cos^2\theta = \frac{1 + \cos(2\theta)}{2}cos2θ=21+cos(2θ)sin2θ=1−cos(2θ)2\sin^2\theta = \frac{1 - \cos(2\theta)}{2}sin2θ=21−cos(2θ)sinθcosθ=12sin(2θ)\sin\theta\cos\theta = \frac{1}{2}\sin(2\theta)sinθcosθ=21sin(2θ)これらの公式をf(θ)f(\theta)f(θ)に代入すると、f(θ)=1+cos(2θ)2+8⋅12sin(2θ)−5⋅1−cos(2θ)2f(\theta) = \frac{1 + \cos(2\theta)}{2} + 8 \cdot \frac{1}{2}\sin(2\theta) - 5 \cdot \frac{1 - \cos(2\theta)}{2}f(θ)=21+cos(2θ)+8⋅21sin(2θ)−5⋅21−cos(2θ)f(θ)=12+12cos(2θ)+4sin(2θ)−52+52cos(2θ)f(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta) + 4\sin(2\theta) - \frac{5}{2} + \frac{5}{2}\cos(2\theta)f(θ)=21+21cos(2θ)+4sin(2θ)−25+25cos(2θ)f(θ)=12−52+12cos(2θ)+52cos(2θ)+4sin(2θ)f(\theta) = \frac{1}{2} - \frac{5}{2} + \frac{1}{2}\cos(2\theta) + \frac{5}{2}\cos(2\theta) + 4\sin(2\theta)f(θ)=21−25+21cos(2θ)+25cos(2θ)+4sin(2θ)f(θ)=−2+3cos(2θ)+4sin(2θ)f(\theta) = -2 + 3\cos(2\theta) + 4\sin(2\theta)f(θ)=−2+3cos(2θ)+4sin(2θ)次に、3cos(2θ)+4sin(2θ)3\cos(2\theta) + 4\sin(2\theta)3cos(2θ)+4sin(2θ)を合成する。3cos(2θ)+4sin(2θ)=Asin(2θ+α)3\cos(2\theta) + 4\sin(2\theta) = A\sin(2\theta + \alpha)3cos(2θ)+4sin(2θ)=Asin(2θ+α)と置くと、A=32+42=9+16=25=5A = \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5A=32+42=9+16=25=5cosα=45,sinα=35\cos\alpha = \frac{4}{5}, \sin\alpha = \frac{3}{5}cosα=54,sinα=53となるα\alphaαが存在する。よって、3cos(2θ)+4sin(2θ)=5sin(2θ+α)3\cos(2\theta) + 4\sin(2\theta) = 5\sin(2\theta + \alpha)3cos(2θ)+4sin(2θ)=5sin(2θ+α) (ただしcosα=45,sinα=35\cos\alpha = \frac{4}{5}, \sin\alpha = \frac{3}{5}cosα=54,sinα=53)したがって、f(θ)=−2+5sin(2θ+α)f(\theta) = -2 + 5\sin(2\theta + \alpha)f(θ)=−2+5sin(2θ+α) (ただしcosα=45,sinα=35\cos\alpha = \frac{4}{5}, \sin\alpha = \frac{3}{5}cosα=54,sinα=53)3. 最終的な答えf(θ)=5sin(2θ+α)−2f(\theta) = 5\sin(2\theta + \alpha) - 2f(θ)=5sin(2θ+α)−2 (ただしcosα=45,sinα=35\cos\alpha = \frac{4}{5}, \sin\alpha = \frac{3}{5}cosα=54,sinα=53)