問題は、$x^6 = 1$ を満たす $x$ を求めることです。代数学複素数方程式解の公式ド・モアブルの定理2025/4/161. 問題の内容問題は、x6=1x^6 = 1x6=1 を満たす xxx を求めることです。2. 解き方の手順x6=1x^6 = 1x6=1 の解を求めるために、複素数の範囲で考えます。111 は、複素平面上で絶対値が 111、偏角が 000 の複素数です。1=ei(0+2πk)1 = e^{i(0 + 2\pi k)}1=ei(0+2πk) と表せます。ここで、kkk は整数です。x6=ei(0+2πk)x^6 = e^{i(0 + 2\pi k)}x6=ei(0+2πk)x=(ei(0+2πk))1/6x = (e^{i(0 + 2\pi k)})^{1/6}x=(ei(0+2πk))1/6x=ei(2πk)/6x = e^{i(2\pi k)/6}x=ei(2πk)/6x=ei(πk)/3x = e^{i(\pi k)/3}x=ei(πk)/3ここで、k=0,1,2,3,4,5k = 0, 1, 2, 3, 4, 5k=0,1,2,3,4,5 を代入して、異なる6つの解を求めます。k=0k = 0k=0: x=ei(0)=1x = e^{i(0)} = 1x=ei(0)=1k=1k = 1k=1: x=ei(π/3)=cos(π/3)+isin(π/3)=12+i32x = e^{i(\pi/3)} = \cos(\pi/3) + i\sin(\pi/3) = \frac{1}{2} + i\frac{\sqrt{3}}{2}x=ei(π/3)=cos(π/3)+isin(π/3)=21+i23k=2k = 2k=2: x=ei(2π/3)=cos(2π/3)+isin(2π/3)=−12+i32x = e^{i(2\pi/3)} = \cos(2\pi/3) + i\sin(2\pi/3) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}x=ei(2π/3)=cos(2π/3)+isin(2π/3)=−21+i23k=3k = 3k=3: x=ei(π)=cos(π)+isin(π)=−1x = e^{i(\pi)} = \cos(\pi) + i\sin(\pi) = -1x=ei(π)=cos(π)+isin(π)=−1k=4k = 4k=4: x=ei(4π/3)=cos(4π/3)+isin(4π/3)=−12−i32x = e^{i(4\pi/3)} = \cos(4\pi/3) + i\sin(4\pi/3) = -\frac{1}{2} - i\frac{\sqrt{3}}{2}x=ei(4π/3)=cos(4π/3)+isin(4π/3)=−21−i23k=5k = 5k=5: x=ei(5π/3)=cos(5π/3)+isin(5π/3)=12−i32x = e^{i(5\pi/3)} = \cos(5\pi/3) + i\sin(5\pi/3) = \frac{1}{2} - i\frac{\sqrt{3}}{2}x=ei(5π/3)=cos(5π/3)+isin(5π/3)=21−i233. 最終的な答えx=1,−1,12+i32,12−i32,−12+i32,−12−i32x = 1, -1, \frac{1}{2} + i\frac{\sqrt{3}}{2}, \frac{1}{2} - i\frac{\sqrt{3}}{2}, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} - i\frac{\sqrt{3}}{2}x=1,−1,21+i23,21−i23,−21+i23,−21−i23