与えられた式 $\frac{4}{75}S_n = 2\left(\frac{5}{16} - \frac{4n+5}{16}\cdot\frac{1}{5^n}\right) - \frac{1}{4}\left\{1-\left(\frac{1}{5}\right)^n\right\} - n^2\left(\frac{1}{5}\right)^{n+1}$ を計算し、$S_n$ を求めます。

代数学数列級数計算漸化式
2025/4/17

1. 問題の内容

与えられた式 475Sn=2(5164n+51615n)14{1(15)n}n2(15)n+1\frac{4}{75}S_n = 2\left(\frac{5}{16} - \frac{4n+5}{16}\cdot\frac{1}{5^n}\right) - \frac{1}{4}\left\{1-\left(\frac{1}{5}\right)^n\right\} - n^2\left(\frac{1}{5}\right)^{n+1} を計算し、SnS_n を求めます。

2. 解き方の手順

まず、与えられた式を整理します。
475Sn=2(5164n+51615n)14{1(15)n}n2(15)n+1\frac{4}{75}S_n = 2\left(\frac{5}{16} - \frac{4n+5}{16}\cdot\frac{1}{5^n}\right) - \frac{1}{4}\left\{1-\left(\frac{1}{5}\right)^n\right\} - n^2\left(\frac{1}{5}\right)^{n+1}
475Sn=10162(4n+5)1615n14+1415nn215n+1\frac{4}{75}S_n = \frac{10}{16} - \frac{2(4n+5)}{16}\cdot\frac{1}{5^n} - \frac{1}{4} + \frac{1}{4}\cdot\frac{1}{5^n} - n^2\cdot\frac{1}{5^{n+1}}
475Sn=588n+10165n14+145nn25n+1\frac{4}{75}S_n = \frac{5}{8} - \frac{8n+10}{16\cdot5^n} - \frac{1}{4} + \frac{1}{4\cdot5^n} - \frac{n^2}{5^{n+1}}
475Sn=58288n+10165n+4165nn255n\frac{4}{75}S_n = \frac{5}{8} - \frac{2}{8} - \frac{8n+10}{16\cdot5^n} + \frac{4}{16\cdot5^n} - \frac{n^2}{5\cdot5^n}
475Sn=388n+6165nn25n+1\frac{4}{75}S_n = \frac{3}{8} - \frac{8n+6}{16\cdot5^n} - \frac{n^2}{5^{n+1}}
475Sn=384n+385nn25n+1\frac{4}{75}S_n = \frac{3}{8} - \frac{4n+3}{8\cdot5^n} - \frac{n^2}{5^{n+1}}
475Sn=385(4n+3)85n+18n285n+1\frac{4}{75}S_n = \frac{3}{8} - \frac{5(4n+3)}{8\cdot5^{n+1}} - \frac{8n^2}{8\cdot5^{n+1}}
475Sn=3820n+15+8n285n+1\frac{4}{75}S_n = \frac{3}{8} - \frac{20n+15+8n^2}{8\cdot5^{n+1}}
Sn=754[388n2+20n+1585n+1]S_n = \frac{75}{4} \left[ \frac{3}{8} - \frac{8n^2+20n+15}{8\cdot 5^{n+1}}\right]
Sn=7543875(8n2+20n+15)325n+1S_n = \frac{75}{4} \cdot \frac{3}{8} - \frac{75(8n^2+20n+15)}{32 \cdot 5^{n+1}}
Sn=2253275(8n2+20n+15)325n+1S_n = \frac{225}{32} - \frac{75(8n^2+20n+15)}{32 \cdot 5^{n+1}}
Sn=2253215(8n2+20n+15)325nS_n = \frac{225}{32} - \frac{15(8n^2+20n+15)}{32 \cdot 5^{n}}
Sn=22532120n2+300n+225325nS_n = \frac{225}{32} - \frac{120n^2+300n+225}{32 \cdot 5^{n}}
Sn=2255n(120n2+300n+225)325nS_n = \frac{225\cdot 5^n - (120n^2+300n+225)}{32 \cdot 5^n}

3. 最終的な答え

Sn=2255n(120n2+300n+225)325nS_n = \frac{225 \cdot 5^n - (120n^2 + 300n + 225)}{32 \cdot 5^n}
または
Sn=22532(18n2+20n+15155n)S_n = \frac{225}{32} \left( 1 - \frac{8n^2+20n+15}{15 \cdot 5^n}\right)

「代数学」の関連問題