画像に示された複数の平方根の式を計算し、最も簡単な形で表現すること。具体的には、以下の問題を解きます。 13) $\sqrt{98}$ 14) $\sqrt{112}$ 15) $\sqrt{150}$ 16) $\sqrt{162}$ 17) $\sqrt[3]{4}$ 18) $\sqrt{\frac{7}{64}}$ 19) $\sqrt{\frac{6}{25}}$ 20) $\sqrt{\frac{8}{9}}$

算数平方根根号計算
2025/4/16

1. 問題の内容

画像に示された複数の平方根の式を計算し、最も簡単な形で表現すること。具体的には、以下の問題を解きます。
13) 98\sqrt{98}
14) 112\sqrt{112}
15) 150\sqrt{150}
16) 162\sqrt{162}
17) 43\sqrt[3]{4}
18) 764\sqrt{\frac{7}{64}}
19) 625\sqrt{\frac{6}{25}}
20) 89\sqrt{\frac{8}{9}}

2. 解き方の手順

13) 98\sqrt{98}
98=2×49=2×7298 = 2 \times 49 = 2 \times 7^2
98=2×72=72\sqrt{98} = \sqrt{2 \times 7^2} = 7\sqrt{2}
14) 112\sqrt{112}
112=2×56=2×2×28=2×2×2×14=2×2×2×2×7=24×7112 = 2 \times 56 = 2 \times 2 \times 28 = 2 \times 2 \times 2 \times 14 = 2 \times 2 \times 2 \times 2 \times 7 = 2^4 \times 7
112=24×7=227=47\sqrt{112} = \sqrt{2^4 \times 7} = 2^2\sqrt{7} = 4\sqrt{7}
15) 150\sqrt{150}
150=2×75=2×3×25=2×3×52150 = 2 \times 75 = 2 \times 3 \times 25 = 2 \times 3 \times 5^2
150=2×3×52=56\sqrt{150} = \sqrt{2 \times 3 \times 5^2} = 5\sqrt{6}
16) 162\sqrt{162}
162=2×81=2×92162 = 2 \times 81 = 2 \times 9^2
162=2×92=92\sqrt{162} = \sqrt{2 \times 9^2} = 9\sqrt{2}
17) 43\sqrt[3]{4}
これは既に最も簡単な形です。
18) 764\sqrt{\frac{7}{64}}
764=764=78\sqrt{\frac{7}{64}} = \frac{\sqrt{7}}{\sqrt{64}} = \frac{\sqrt{7}}{8}
19) 625\sqrt{\frac{6}{25}}
625=625=65\sqrt{\frac{6}{25}} = \frac{\sqrt{6}}{\sqrt{25}} = \frac{\sqrt{6}}{5}
20) 89\sqrt{\frac{8}{9}}
89=89=233=22×23=223\sqrt{\frac{8}{9}} = \frac{\sqrt{8}}{\sqrt{9}} = \frac{\sqrt{2^3}}{3} = \frac{\sqrt{2^2 \times 2}}{3} = \frac{2\sqrt{2}}{3}

3. 最終的な答え

13) 727\sqrt{2}
14) 474\sqrt{7}
15) 565\sqrt{6}
16) 929\sqrt{2}
17) 43\sqrt[3]{4}
18) 78\frac{\sqrt{7}}{8}
19) 65\frac{\sqrt{6}}{5}
20) 223\frac{2\sqrt{2}}{3}

「算数」の関連問題

(1) 260を素因数分解する。 (2) 396, 462, 660の最大公約数を求める。 (3) - 表は、Aさん、Bさん、Cさん、Dさん、Eさんの5人の生徒の身長を、162.0cmを基準として...

素因数分解最大公約数平均身長
2025/8/1

正の数と負の数の計算問題です。足し算、引き算、掛け算、割り算が混ざった計算をします。

四則演算正負の数分数計算
2025/8/1

与えられた正の数・負の数の計算問題を解く。具体的には、足し算、引き算、掛け算、割り算が混ざった13個の計算問題を解く。

四則演算負の数分数計算
2025/8/1

(3) 次の表は、Aさん、Bさん、Cさん、Dさん、Eさんの5人の生徒の身長を、162.0cmを基準として、基準より高い場合を正の数、低い場合を負の数で表したものです。 生徒| A | B | C | ...

平均身長加減算
2025/8/1

2つの問題があります。 (1) 1, 2, 3, 4, 5 の5個の数字から異なる3個の数字を用いてできる3桁の整数のうち、奇数は何個あるか。 (2) A, B, C, D の4人が一列に並ぶ方法は何...

場合の数順列整数
2025/8/1

与えられた数式を計算する問題です。 数式は以下の通りです。 $(5-6) \times 20 + 3 - (7-8+3-9 \times 2) \times (26-8) \div 3$

四則演算計算
2025/8/1

画像には平方根に関する複数の問題が含まれています。具体的には、平方根の計算、近似値の計算、式の値の計算、そして平方根の利用に関する問題があります。

平方根根号式の計算近似値
2025/8/1

5個の数字0, 1, 2, 3, 4を重複を許して使ってできる自然数について、以下の個数を求める問題です。 (1) 3桁の数 (2) 3桁の偶数 (3) 123より小さい数

場合の数組み合わせ自然数桁数
2025/8/1

与えられた数を $\sqrt{a}$ の形に変形する問題です。具体的には、以下の6つの数を変形します。 (1) $2\sqrt{7}$ (2) $10\sqrt{2}$ (3) $6\sqrt{5}$...

平方根根号の変形数の計算
2025/8/1

問題は $\frac{3}{5} \sqrt{10}$ を計算することです。

平方根計算
2025/8/1