直角三角形ABCにおいて、$\angle C = 90^\circ$, $BC = 4$ cm, $AC = 8$ cmであるとき、斜辺ABの長さを求めよ。

幾何学直角三角形ピタゴラスの定理三平方の定理辺の長さ
2025/4/17

1. 問題の内容

直角三角形ABCにおいて、C=90\angle C = 90^\circ, BC=4BC = 4 cm, AC=8AC = 8 cmであるとき、斜辺ABの長さを求めよ。

2. 解き方の手順

直角三角形なので、ピタゴラスの定理を使用します。ピタゴラスの定理は、直角三角形において、a2+b2=c2a^2 + b^2 = c^2aabbは直角を挟む辺の長さ、ccは斜辺の長さ)と表されます。
この問題では、BC=4BC=4 cm, AC=8AC=8 cmなので、ABABを斜辺としたとき、
AB2=BC2+AC2AB^2 = BC^2 + AC^2
が成り立ちます。
AB2=42+82AB^2 = 4^2 + 8^2
AB2=16+64AB^2 = 16 + 64
AB2=80AB^2 = 80
AB=80AB = \sqrt{80}
AB=16×5AB = \sqrt{16 \times 5}
AB=45AB = 4\sqrt{5}

3. 最終的な答え

454\sqrt{5} cm

「幾何学」の関連問題

座標平面上に3点 A(-1, 3), B(4, 5), C(3, 1) が与えられている。以下の問いに答えよ。 (1) 線分 AB の長さを求めよ。 (2) 線分 AB を 5:3 の比に内分する点 ...

座標平面距離内分点重心
2025/4/18

問題は、鋭角三角形ABCにおいて、頂点Bから辺CAに垂線BHを引いたとき、正弦定理が成り立つことを示す過程で、空欄を埋めるものです。 具体的には、以下の3つの空欄を埋める必要があります。 * △A...

正弦定理三角形三角比
2025/4/18

三角形ABCにおいて、頂点Bから対辺CAに下ろした垂線をBHとする。 直角三角形AHB, CHBにおいて、BHの長さを三角関数で表し、正弦定理を導出する問題である。

三角関数正弦定理三角形直角三角形
2025/4/18

余弦定理を用いて、$a^2$ を計算し、$a$ の値を求めます。

余弦定理三角形辺の長さ三角比
2025/4/18

$b = 2\sqrt{2}$, $c = 2$, $A = 135^\circ$ のとき、$a$ の値を余弦定理を用いて求める問題です。

余弦定理三角比三角形辺の長さ
2025/4/18

三角形ABCにおいて、$b=3, c=4, A=120^\circ$のとき、面積$S$を求める問題です。面積の公式 $S = \frac{1}{2}bc\sin A$ を利用します。

三角形面積三角関数正弦幾何
2025/4/18

$\theta$ が鈍角で、$\sin\theta = \frac{1}{3}$ のとき、$\cos\theta$ と $\tan\theta$ の値を求める問題です。与えられた式に従って、空欄を埋め...

三角比三角関数鈍角cossintan
2025/4/18

$\theta$ が鈍角で、$\sin{\theta} = \frac{1}{3}$ のとき、$\cos{\theta}$ と $\tan{\theta}$ の値を求めます。

三角関数三角比鈍角cossintan
2025/4/18

表に示された角度(0°と135°)に対するサイン、コサイン、タンジェントの値を求める問題です。具体的には、ア、イ、ウ、エ、オ、カに当てはまる数や文字を答える必要があります。

三角比三角関数sincostan角度象限
2025/4/18

三角形の辺の長さ$a, c$と角$B$が与えられたとき、余弦定理を用いて辺$b$の長さを求める問題です。$a=1, c=\sqrt{3}, B=30^\circ$が与えられています。

余弦定理三角形辺の長さ角度
2025/4/18