1. 問題の内容
四角形ABCDの面積をSとするとき、K君が考えた平行四辺形EFGHの面積は、四角形ABCDの面積の何倍か、という問題です。
2. 解き方の手順
K君の図を見ると、四角形ABCDは平行四辺形EFGHの中に完全に含まれており、さらに、四角形ABCDを構成する各三角形(例えば、三角形ABC)と、平行四辺形EFGHから四角形ABCDを除いた部分にある対応する三角形(例えば、三角形BEA)は、それぞれ合同です。
したがって、平行四辺形EFGHは、四角形ABCDと合同な四角形ABCDを取り囲む形で構成されていると解釈できます。
つまり、平行四辺形EFGHの面積は、四角形ABCDの面積の2倍になります。
3. 最終的な答え
2 倍