$\sin{\frac{19}{6}\pi}$, $\cos{(-\frac{15}{4}\pi)}$, $\tan{\frac{20}{3}\pi}$ の値をそれぞれ求める。解析学三角関数三角関数の値sincostanラジアン2025/4/241. 問題の内容sin196π\sin{\frac{19}{6}\pi}sin619π, cos(−154π)\cos{(-\frac{15}{4}\pi)}cos(−415π), tan203π\tan{\frac{20}{3}\pi}tan320π の値をそれぞれ求める。2. 解き方の手順(1) sin196π\sin{\frac{19}{6}\pi}sin619π の値を求める。196π=186π+16π=3π+16π\frac{19}{6}\pi = \frac{18}{6}\pi + \frac{1}{6}\pi = 3\pi + \frac{1}{6}\pi619π=618π+61π=3π+61πsin(3π+16π)=sin(π+2π+16π)=sin(π+π6)=−sinπ6=−12\sin{(3\pi + \frac{1}{6}\pi)} = \sin{(\pi + 2\pi + \frac{1}{6}\pi)} = \sin{(\pi + \frac{\pi}{6})} = -\sin{\frac{\pi}{6}} = -\frac{1}{2}sin(3π+61π)=sin(π+2π+61π)=sin(π+6π)=−sin6π=−21(2) cos(−154π)\cos{(-\frac{15}{4}\pi)}cos(−415π) の値を求める。−154π=−164π+14π=−4π+14π-\frac{15}{4}\pi = -\frac{16}{4}\pi + \frac{1}{4}\pi = -4\pi + \frac{1}{4}\pi−415π=−416π+41π=−4π+41πcos(−4π+14π)=cos(14π)=22\cos{(-4\pi + \frac{1}{4}\pi)} = \cos{(\frac{1}{4}\pi)} = \frac{\sqrt{2}}{2}cos(−4π+41π)=cos(41π)=22(3) tan203π\tan{\frac{20}{3}\pi}tan320π の値を求める。203π=183π+23π=6π+23π\frac{20}{3}\pi = \frac{18}{3}\pi + \frac{2}{3}\pi = 6\pi + \frac{2}{3}\pi320π=318π+32π=6π+32πtan(6π+23π)=tan23π=tan(π−13π)=−tanπ3=−3\tan{(6\pi + \frac{2}{3}\pi)} = \tan{\frac{2}{3}\pi} = \tan{(\pi - \frac{1}{3}\pi)} = -\tan{\frac{\pi}{3}} = -\sqrt{3}tan(6π+32π)=tan32π=tan(π−31π)=−tan3π=−33. 最終的な答えsin196π=−12\sin{\frac{19}{6}\pi} = -\frac{1}{2}sin619π=−21cos(−154π)=22\cos{(-\frac{15}{4}\pi)} = \frac{\sqrt{2}}{2}cos(−415π)=22tan203π=−3\tan{\frac{20}{3}\pi} = -\sqrt{3}tan320π=−3