空欄にあてはまる式を求める問題です。 与えられた式は $\square \times \frac{1}{5}x^3y^2 \div (-\frac{2}{5}x^2y^3)^2 = \frac{15}{2x^1y^2}$ です。代数学式の計算分数式指数法則文字式2025/4/271. 問題の内容空欄にあてはまる式を求める問題です。与えられた式は□×15x3y2÷(−25x2y3)2=152x1y2\square \times \frac{1}{5}x^3y^2 \div (-\frac{2}{5}x^2y^3)^2 = \frac{15}{2x^1y^2}□×51x3y2÷(−52x2y3)2=2x1y215です。2. 解き方の手順まず、(−25x2y3)2(-\frac{2}{5}x^2y^3)^2(−52x2y3)2 を計算します。(−25x2y3)2=425x4y6(-\frac{2}{5}x^2y^3)^2 = \frac{4}{25}x^4y^6(−52x2y3)2=254x4y6与えられた式は□×15x3y2÷425x4y6=152x1y2\square \times \frac{1}{5}x^3y^2 \div \frac{4}{25}x^4y^6 = \frac{15}{2x^1y^2}□×51x3y2÷254x4y6=2x1y215□×15x3y2×254x4y6=152x1y2\square \times \frac{1}{5}x^3y^2 \times \frac{25}{4x^4y^6} = \frac{15}{2x^1y^2}□×51x3y2×4x4y625=2x1y215□×54x3y2x4y6=152x1y2\square \times \frac{5}{4}\frac{x^3y^2}{x^4y^6} = \frac{15}{2x^1y^2}□×45x4y6x3y2=2x1y215□×541xy4=152x1y2\square \times \frac{5}{4}\frac{1}{xy^4} = \frac{15}{2x^1y^2}□×45xy41=2x1y215□=152x1y2÷54xy4\square = \frac{15}{2x^1y^2} \div \frac{5}{4xy^4}□=2x1y215÷4xy45□=152x1y2×4xy45\square = \frac{15}{2x^1y^2} \times \frac{4xy^4}{5}□=2x1y215×54xy4□=60xy410xy2\square = \frac{60xy^4}{10xy^2}□=10xy260xy4□=6y2\square = 6y^2□=6y23. 最終的な答え6y26y^26y2