正の奇数全体の集合を $A$ とする。次の (1), (2), (3) のそれぞれについて、与えられた数が集合 $A$ に含まれる場合は $\in$ を、含まれない場合は $\notin$ を $\square$ に入れよ。 (1) 5 $\square$ A (2) 6 $\square$ A (3) -3 $\square$ A

数論集合整数の性質奇数偶数
2025/4/27

1. 問題の内容

正の奇数全体の集合を AA とする。次の (1), (2), (3) のそれぞれについて、与えられた数が集合 AA に含まれる場合は \in を、含まれない場合は \notin\square に入れよ。
(1) 5 \square A
(2) 6 \square A
(3) -3 \square A

2. 解き方の手順

集合 AA は正の奇数全体の集合である。
(1) 5は正の奇数なので、AA に含まれる。よって \in を入れる。
(2) 6は正の偶数なので、AA に含まれない。よって \notin を入れる。
(3) -3は負の数なので、AA に含まれない。よって \notin を入れる。

3. 最終的な答え

(1) 5 \in A
(2) 6 \notin A
(3) -3 \notin A

「数論」の関連問題

問題は、与えられた数(72と300)について、正の約数の個数と、正の約数の総和を求めることです。

約数素因数分解約数の個数約数の総和
2025/4/27

正の奇数の列を、第n群にn個の奇数が含まれるように群に分ける。 (1) 第n群の最初の奇数を求める。 (2) 第n群に含まれるすべての奇数の和を求める。

数列奇数等差数列群数列和の公式
2025/4/27

$\sqrt{540 - 20n}$ が整数となるような自然数 $n$ の値を全て求める問題です。

平方根整数の性質因数分解自然数
2025/4/27

与えられた集合 $\{5n-4 | n \text{ は自然数}\}$ の要素をいくつか具体的に列挙し、その規則性を明らかにします。

集合数列等差数列規則性
2025/4/27

6で割ると4余り、7で割ると5余る3桁の自然数のうち、最小のものを求めます。

合同式剰余中国剰余定理整数
2025/4/26

数列 $\{c_n\}$ が与えられており、この数列を群に分けます。第 $m$ 群は $m$ 個の項を含みます。第 $m$ 群の第 $k$ 番目の項は $\frac{2k-1}{2m}$ で表されます...

数列群数列級数和の公式
2025/4/26

整数 $a, b, c$ が $a^2 + b^2 = c^2$ を満たすとき、$a, b, c$ のうち少なくとも1つは偶数であることを証明します。

整数ピタゴラス数偶数奇数背理法
2025/4/26

(1) 264を素因数分解せよ。 (2) 264の約数のうち、4の倍数であるものの個数を求めよ。

素因数分解約数整数の性質
2025/4/26

(1) 自然数 $n$ に対して、$\frac{n}{20}$ と $\frac{n}{42}$ がともに自然数となるような最小の $n$ を求める。 (2) $\frac{65}{42}$ と $\...

最小公倍数最大公約数互いに素オイラーのトーシェント関数約数倍数
2025/4/26

(1) $N = 1 \cdot 2 \cdot 3 \cdots 60$ を計算したとき、末尾に0が連続して何個並ぶか。 (2) $N = 1 \cdot 2 \cdot 3 \cdots 400$...

階乗素因数分解素因数の個数末尾の0の個数
2025/4/25