与えられた6つの複素数に関する式を計算します。代数学複素数平方根計算2025/4/29はい、承知いたしました。問題文に書かれている6つの式について、それぞれ計算手順と答えを説明します。1. 問題の内容与えられた6つの複素数に関する式を計算します。2. 解き方の手順(1) −2−8\sqrt{-2}\sqrt{-8}−2−8−2=2i\sqrt{-2} = \sqrt{2}i−2=2i−8=8i=22i\sqrt{-8} = \sqrt{8}i = 2\sqrt{2}i−8=8i=22i−2−8=(2i)(22i)=2⋅2i2=4(−1)=−4\sqrt{-2}\sqrt{-8} = (\sqrt{2}i)(2\sqrt{2}i) = 2 \cdot 2 i^2 = 4(-1) = -4−2−8=(2i)(22i)=2⋅2i2=4(−1)=−4(2) −−3−4-\sqrt{-3}\sqrt{-4}−−3−4−3=3i\sqrt{-3} = \sqrt{3}i−3=3i−4=2i\sqrt{-4} = 2i−4=2i−−3−4=−(3i)(2i)=−23i2=−23(−1)=23-\sqrt{-3}\sqrt{-4} = -(\sqrt{3}i)(2i) = -2\sqrt{3}i^2 = -2\sqrt{3}(-1) = 2\sqrt{3}−−3−4=−(3i)(2i)=−23i2=−23(−1)=23(3) (2+−3)2(2+\sqrt{-3})^2(2+−3)2−3=3i\sqrt{-3} = \sqrt{3}i−3=3i(2+−3)2=(2+3i)2=22+2(2)(3i)+(3i)2=4+43i+3i2=4+43i−3=1+43i(2+\sqrt{-3})^2 = (2+\sqrt{3}i)^2 = 2^2 + 2(2)(\sqrt{3}i) + (\sqrt{3}i)^2 = 4 + 4\sqrt{3}i + 3i^2 = 4 + 4\sqrt{3}i - 3 = 1 + 4\sqrt{3}i(2+−3)2=(2+3i)2=22+2(2)(3i)+(3i)2=4+43i+3i2=4+43i−3=1+43i(4) (−1+−2)2(-1+\sqrt{-2})^2(−1+−2)2−2=2i\sqrt{-2} = \sqrt{2}i−2=2i(−1+−2)2=(−1+2i)2=(−1)2+2(−1)(2i)+(2i)2=1−22i+2i2=1−22i−2=−1−22i(-1+\sqrt{-2})^2 = (-1+\sqrt{2}i)^2 = (-1)^2 + 2(-1)(\sqrt{2}i) + (\sqrt{2}i)^2 = 1 - 2\sqrt{2}i + 2i^2 = 1 - 2\sqrt{2}i - 2 = -1 - 2\sqrt{2}i(−1+−2)2=(−1+2i)2=(−1)2+2(−1)(2i)+(2i)2=1−22i+2i2=1−22i−2=−1−22i(5) −25−5\frac{\sqrt{-25}}{\sqrt{-5}}−5−25−25=5i\sqrt{-25} = 5i−25=5i−5=5i\sqrt{-5} = \sqrt{5}i−5=5i−25−5=5i5i=55=555=5\frac{\sqrt{-25}}{\sqrt{-5}} = \frac{5i}{\sqrt{5}i} = \frac{5}{\sqrt{5}} = \frac{5\sqrt{5}}{5} = \sqrt{5}−5−25=5i5i=55=555=5(6) 6−2\frac{\sqrt{6}}{\sqrt{-2}}−26−2=2i\sqrt{-2} = \sqrt{2}i−2=2i6−2=62i=3i=3ii2=−3i\frac{\sqrt{6}}{\sqrt{-2}} = \frac{\sqrt{6}}{\sqrt{2}i} = \frac{\sqrt{3}}{i} = \frac{\sqrt{3}i}{i^2} = -\sqrt{3}i−26=2i6=i3=i23i=−3i3. 最終的な答え(1) -4(2) 232\sqrt{3}23(3) 1+43i1 + 4\sqrt{3}i1+43i(4) −1−22i-1 - 2\sqrt{2}i−1−22i(5) 5\sqrt{5}5(6) −3i-\sqrt{3}i−3i